Chimeric Gag pseudovirions

Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector – Virus or component thereof

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4241921, 4241991, 4352351, 435238, 4353201, 435348, 530350, 530826, 536 231, 536 234, 536 235, 536 2351, 536 2372, A61K 3921

Patent

active

060998474

ABSTRACT:
The present invention provides, inter alia, recombinant chimeric nucleic acids encoding a Gag-fs-fusion partner fusion protein; a pseudovirion comprising a retroviral Gag protein and a fusion partner, wherein the fusion partner is present in a Gag-fs-fusion partner fusion protein; an immunogenic composition comprising a pseudovirion; a Gag-fs-fusion partner fusion protein; and a method of making the pseudovirions of the present invention.

REFERENCES:
Gonda and Oberste, Control of Virus Diseases, (Kurstak, E. Ed.) pp. 3-31 (1992).
Gonda, M.A., "Molecular Biology and Virus-Host Interactions of Lentiviruses.sup.a," Annals of the New York Academy of Sciences, 724: 22-42 (1994).
Gallo, R.C., "Human Retroviruses: A Decade of Discovery and Link with Human Disease," The Journal of Infectious Diseases, 164:235-43, (1991).
Levy, J.A., "Pathogenesis of Human Immunodeficiency Virus Infection," Microbiology Reviews, 57 (1):183-289 (Mar. 1993).
Mann, J.M., "Global AIDS into the 1990s," Journal of Acquired Immune Deficiency Syndromes, 3 (4):438-442 (1990).
Piot, p., et al., "The Global Epidemiology of HIV Infection: Continuity, Heterogeneity, and Change," Journal of Acquired Immune Deficiency Syndromes, 3(4):403-412 (1990).
Gallo, R.C., "Human retroviruses in the second decade: A personal perspective," Nature Medicine, 1 (8):753-759 (1995).
Daar, E.S., et al., "Transient High Levels of Viremia in Patients with Primary Human Immunodeficiency Virus Type 1 Infection," The New England Journal of Medicine, 324 (14):961-964 (1991).
Graziosi, C., et al., "Kinetics of human immunodeficiency virus type 1 (HIV-1) DNA and RNA synthesis during primary HIV-1 infection," Proc. Natl. Acad. Sci. USA, 90:6405-6409 (1993).
Borrow, P., "Virus-Specific CD8.sup.+ Cytotoxic T-Lymphocyte Activity Associated with Control of Viremia in Primary Human Immunodeficiency Virus Type 1 Infection," Journal of Virology, 68 (9):6103-6110 (1994).
Pantaleo, et al., "Major expansion of CD8.sup.+ T cells with a predominant V.beta. usage during the primary immune response to HIV," Nature, 370:463-467 (1994).
Koup, R.A., "Temporal Association of Cellular Immune Responses with the Initial Control of Viremia in Primary Human Immunodeficiency Virus Type 1 Syndrome," Journal of Virology, 68 (7):4650-4655 (1994).
Cao, Y. et al., "Virologic and Immunologic Characterization of Long-Term Survivors of Human Immunodeficiency Virus Type 1 Infection," The New England Journal of Medicine, 332 (4):201-208 (1995).
Klein, M. R., et al., "Kinetics of Gag-specific Cytotoxin T Lymphocyte Responses during the Clinical Course of HIV-1 Infection: A Longitudinal Analysis of Rapid Progressors and Long-term Asymptomatics," J. Exp. Med., 181:1365-1372 (1995).
McFarland, E., et al., "Cytotoxic T Lymphocyte Lines Specific for Human Immunodeficiency Virus Type 1 Gag and Reverse Transcriptase Derived from a Vertically Infected Child," The Journal of Infectious Diseases, 167:719-23 (1993).
Gheysen, D., et al., "Assembly and Release of HIV-1 Percursor Pr55.sup.gag Virus-like Particles from Recombinant Baculovirus-Infected Insect Cells," Cell, 59:103-112 (1989).
Karacostas, V., et al., "Human immunodeficiency virus-like particles produced by a vaccinia virus expression vector," Proc. Natl. Acad. Sci. USA, 86:8964-8967 (1989).
Delchambre M., et al., "The GAG precursor of simian immunodeficiency virus assembles into virus-like particles," The EMBO Journal, 8 (9):2653-2660 (1989).
Rasmussen, L., et al., "Characterization of Virus-like Particles Produced by a Recombinant Baculovirus Containing the gag Gene of the bovine Immunodeficiency-like Virus.sup.1," Virology, 178:435-451 (1990).
Karacostas, V., et al., "Overexpression of the HIV-1 Gag-Pol Polyprotein Results in Intracellular Activation of HIV-1 Protease and Inhibition of Assembly an Budding of Virus-like Particles," Virology, 193:661-671 (1993).
Morikawa, S., et al., "Analyses of the Requirements for the Synthesis of Virus-like Particles by Feline Immunodeficiency Virus gag Using Baculovirus Vectors," Virology, 183:288-297 (1991).
Wagner, R., et al., "Studies on processing, particle formation, and immunogenicity of the HIV-1 gag gene product a possible component of a HIV vaccine," Arch. Virol., 127:117-137 (1992).
Daniel et al. "High-titer Immune Responses Elicited by Recombinant Vaccinia Virus Priming and Particle Boosting Are Ineffective in Preventing Virulent SIV Infection", Aids Research and Human Retroviruses, vol. 10, No. 7 (Jul. 1994) pp. 839-851. RC607.A26.A35.
Truong et al. "Assembly and Immunogenicity of Chimeric Gag-Env Proteins Derived from the Human Immunodeficiency Virus Type 1", Aids Research and Human Retroviruses, vol. 12, No. 4(Mar. 1, 1995), pp. 291-301. RC607.A26.A35.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Chimeric Gag pseudovirions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Chimeric Gag pseudovirions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chimeric Gag pseudovirions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1147739

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.