Chimeric antibody with specificity to human B cell surface...

Drug – bio-affecting and body treating compositions – Immunoglobulin – antiserum – antibody – or antibody fragment,... – Structurally-modified antibody – immunoglobulin – or fragment...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S153100, C424S155100, C424S178100, C424S182100, C424S183100, C530S387300, C530S388730, C530S391100, C530S391300, C530S391700

Reexamination Certificate

active

06652852

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to recombinant DNA methods of preparing an antibody with specificity for an antigen on the surface of human B cells, genetic sequences in coding therefor, as well as methods of obtaining such sequences.
2. Background Art
The application of cell-to-cell fusion for the production of monoclonal antibodies by Kohler and Milstein (Nature (London), 256: 495, 1975) spawned a revolution in biology equal in impact to that from the invention of recombinant DNA cloning. Monoclonal antibodies produced from hybridomas are already widely used in clinical and basic scientific studies. Applications of human monoclonal antibodies produced by human hybridomas hold great promise for the treatment of cancer, viral and microbial infections, certain immunodeficiencies with diminished antibody production, and other diseases and disorders of the immune system.
Unfortunately, a number of obstacles exist with respect to the development of human monoclonal antibodies. This is especially true when attempting to develop therapeutically useful monoclonal antibodies which define human cell surface antigens. Many of these human cell surface antigens are not recognized as foreign antigens by the human immune system; therefore, these antigens are not immunogenic in man. By contrast, human cellular antigens which are immunogenic in mice can be used for the production of mouse imonoclonal antibodies that specifically recognize the human antigens. Although such antibodies may be used therapeutically in man, repeated injections of “foreign” antibodies, such as a mouse antibody, in humans, can lead to harmful hypersensitivity reactions as well as increased rate of clearance of the circulating antibody molecules so that the antibodies do not reach their target site. Furthermore, mouse monoclonal antibodies may lack the ability to efficiently interact with human effector cells as assessed by functional assays such as antibody-dependent cellular cytotoxicity (ADCC) and complement-mediated cytolysis (CDC).
Another problem faced by immunologists is that most human monoclonal antibodies obtained in cell culture are of the IgM type. When it is desirable to obtain human monoclonals of the IgG type, however, it has been necessary to use such techniques as cell sorting to identify and isolate the few cells which are producing antibodies of the IgG or other type from the majority producing antibodies of the IgM type. A need therefore exists for an efficient method of switching antibody classes, for any given antibody of a predetermined or desired antigenic specificity.
The present invention bridges both the hybridoma and genetic engineering technologies to provide a quick and efficient method, as well as products derived therefrom, for the production of a chimeric human
on-human antibody.
The chimeric antibodies of the present invention embody a combination of the advantageous characteristics of monoclonal antibodies derived from mouse-mouse hybridomas and of human monoclonal antibodies. The chimeric monoclonal antibodies, like mouse monoclonal antibodies, can recognize and bind to a human target antigen; however, unlike mouse monoclonal antibodies, the species-specific properties of the chimeric antibodies will avoid the induction of harmful hypersen-sitivity reactions and may allow for resistance to clearance when used in humans in vivo. Also, the inclusion of appropriate human immunoglobulin sequences can result in an antibody which efficiently interacts with human effector cells in vivo to cause tumor cell lysis and the like. Moreover, using the methods disclosed in the present invention, any desired antibody isotype can be conferred upon a particular antigen combining site.
INFORMATION DISCLOSURE STATEMENT
Approaches to the problem of producing chimeric antibodies have been published by various authors.
* Note: The present Information Disclosure Statement is subject to the provisions of 37 C.F.R. 1.97(b). In addition, Applicants reserve the right to demonstrate that their invention was made prior to any one or more of the mentioned publications.
Morrison, S. L. et al.,
Proc. Natl. Acad. Sci., USA
, 81: 6851-6855 (November 1984), describe the production of a mouse-human antibody molecule of defined antigen binding specificity, produced by joining the variable region genes of a mouse antibody-producing myeloma cell line with known antigen binding specificity to human immunoglobulin constant region genes using recombinant DNA techniques. Chimeric genes were constructed, wherein the heavy chain variable region exon from the myeloma cell line S107 well joined to human IgG1 or IgG2 heavy chain constant region exons, and the light chain variable region exon from the same myeloma to the human kappa light chain exon. These genes were transfected into mouse myeloma cell lines and. Transformed cells producing chimeric mouse-human antiphosphocholine antibodies were thus developed.
Morrison, S. L. et al., European Patent Publication No. 173494 (published Mar. 5, 1986), disclose chimeric “receptors” (e.g. antibodies) having variable regions derived from one species and constant regions derived from another. Mention is made of utilizing cDNA cloning to construct the genes, although no details of cDNA cloning or priming are shown. (see pp 5, 7 and 8).
Boulianne, G. L. et al.,
Nature
, 312: 643 (Dec. 13, 1984), also produced antibodies consisting of mouse variable regions joined to human constant regions. They constructed irmmiunoglobulin genes in which the DNA segments encoding mouse variable regions specific for the hapten trinitrophenyl (TNP) were joined to segments encoding human mu and kappa constant regions. These chimeric genes were expressed as functional TNP binding chimeric IgM.
For a commentary on the work of Boulianne et al. and Morrison et al., see Munro,
Nature
, 312: 597 (Dec. 13, 1984), Dickson,
Genetic Engineering News
, 5, No. 3 (March 1985), or Marx, Science, 229: 455 (August 1985).
Neuberger, M. S. et al.,
Nature
, 314: 268 (Mar. 25, 1985), also constructed a chimeric heavy chain immunoglobulin gene in which a DNA segment encoding a mouse variable region specific for the hapten 4-hydroxy-3-nitrophenacetyl (NP) was joined to a segment encoding the human epsilon region. When this chimeric gene was transfected into the J558L cell line, an antibody was produced which bound to the NP hapten and had human IgE properties.
Neuberger, M. S. et al., have also published work showing the preparation of cell lines that secrete hapten-specific antibodies in which the Fc portion has been replaced either with an active enzyme moiety (Williams, G. and Neuberger, M. S.
Gene
43:319, 1986) or with a polypeptide displaying c-myc antigenic determinants (
Nature
, 312:604, 1984).
Neuberger, M. et. al., PCT Publication WO 86/01533, (published Mar. 13, 1986) also disclose production of chimeric antibodies (see p. 5) and suggests, among the technique's many uses the concept of “class switching” (see p. 6).
Taniguchi, M., in European Patent, Publication No. 171 496 (published Feb. 19, 1986) discloses the production of chimeric antibodies having variable regions with tumor specificty derived from experimental animals, and constant regions derived from human. The corresponding heavy and light chain genes are produced in the genomic form, and expressed in mammalian cells.
Takeda, S. et al.,
Nature
, 314: 452 (Apr. 4, 1985) have described a potential method for the construction of chimeric immunoglobulin genes which have intron sequences removed by the use of a retrovirus vector. However, an unexpected splice donor site caused the deletion of the V region leader sequence. Thus, this approach did not yield complete chimeric antibody molecules.
Cabilly, S. et al.,
Proc. Natl. Acad. Sci., USA
, 81: 3273-3277 (June 1984), describe plasmids that direct the synthesis in
E. coli
of heavy chains and/or light chains of anti-carcinoembryonic antigen (CEA) antibody. Another plasmid was constructed for expression of a truncated form of heavy chain (Fd′) fragme

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Chimeric antibody with specificity to human B cell surface... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Chimeric antibody with specificity to human B cell surface..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chimeric antibody with specificity to human B cell surface... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3134526

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.