Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Recombinant dna technique included in method of making a...
Reexamination Certificate
1997-10-03
2001-09-18
Saunders, David (Department: 1644)
Chemistry: molecular biology and microbiology
Micro-organism, tissue cell culture or enzyme using process...
Recombinant dna technique included in method of making a...
C435S069600, C435S320100, C530S387300, C530S391100, C530S413000, C536S023400, C536S023530
Reexamination Certificate
active
06291208
ABSTRACT:
FIELD OF INVENTION
The present invention is concerned with novel recombinant antibody molecules genetically modified to contain an antigen moiety for the purpose of delivery of the antigen moiety to antigen-presenting cells of the immune system.
BACKGROUND OF INVENTION
Current theories of immunology suggest that, in order to provide a potent antibody response, an antigen must be seen by both B cells, which subsequently develop into the antibody producing cells, and also by helper T-cells, which provide growth and differentiation signals to the antigen specific B-cells. Helper T-cells recognize the antigen on the surface of antigen-presenting cells (APC) in association with Class II major histocompatibility complex (MHC) gene products.
There are significant advantages in using proteins and peptides derived from proteins of infectious organisms as part of subunit vaccines. The search for such suitable subunits constitutes a very active area of both present and past research. Advances in techniques of recombinant DNA manipulations, protein purification, peptide synthesis and cellular immunology have greatly assisted in this endeavour. However, a major stumbling block to the use of such materials as vaccines has been the relatively poor in-vivo immunogenicity of most protein subunits and peptides. Generally, the immune response to vaccine preparations is enhanced by the use of adjuvants. However, the only currently licensed adjuvants for use in humans are aluminum hydroxide and aluminum phosphate, collectively termed alum, which is limited in its effectiveness as a potent adjuvant. There is thus a need for new adjuvants with the desired efficacy and safety profiles.
Several adjuvants, such as Freund's Complete Adjuvant (FCA), syntex and QS21, have been used widely in animals (ref 1−Throughout this application, various references are referred to in parenthesis to more fully describe the state of the art to which this invention pertains. Full bibliographic information for each citation is found at the end of the specification, immediately preceding the claims. The disclosures of these references are hereby incorporated by reference into the present disclosure). In animals, administration of peptides and protein antigens with these adjuvants, has been shown to result in neutralizing antibodies against a variety of infectious organisms (refs. 3 to 8). A novel way of engaging both the B and T cell components of an immune response has been described, which uses anti-class II monoclonal antibodies (mabs) coupled to antigens to target class II bearing antigen presenting cells (APC's) (refs 9 to 11, also U.S. Pat. Nos. 5,194,254 and 4,950,480 assigned to the assignee hereof). Experiments carried out in-vivo in rodents and rabbits using this technology, (refs. 9 to 12), have demonstrated convincing proof of enhancement in immunogenicity of antigens, in the absence of conventional adjuvants. Several research groups have used other cell surface markers such as Surface Immunoglobulin (sIg) (ref. 13), Fc &ggr; receptors, CD45 and MHC class I (refs. 14 to 17), to achieve targeting to APC's; however, most of these latter studies involve in-vitro experiments and lack animal data. Another group of studies reports the use of antibodies of irrelevant specificity to carry antigen epitopes (refs. 18 to 24). The in-vivo studies utilizing such “antigenized antibodies”, however, involves the use of conventional adjuvants and some of them require multiple injections for the desired effect (ref. 24).
In previous studies using anti-class II mab as a targeting molecule (refs. 9 to 11), biotin-streptavidin based interaction was used to link the antibody and antigen. There are some inherent disadvantages with such chemical coupling techniques, such as yields (about 20%) and also the variability factor between different preparations. There is also no adequate control on the amounts of coupled peptide as well as the exact location of the reaction. Additionally, further purification is usually required and, therefore, losses in material can be significant.
Recently a study reporting in-vitro data using anti-human class II Fab-peptide fusions generated by recombinant DNA methodology, has been published (ref. 27). There are several differences between these fusions and the present invention in that the former is an
E. coli
expressed monovalent protein fragment of a divalent whole immunoglobulin molecule and also is an in-vitro study. The common problems encountered in bacterial expression systems include expression as inclusion bodies which require solubilization and refolding with extensive product losses. The expression of whole antibody is presently not possible in
E. coli
and, therefore, the monovalent Fab may not have the requisite affinity for in-vivo targeting. There are, thus, several advantages in using a whole IgG recombinant system as described herein.
There remains a need, therefore, to produce conjugates of targeting antibodies and antigens of specific reproducible structure in high yields. Such conjugate antibody molecules-and nucleic acid molecules encoding the same are useful in immunogenic preparations including vaccines, for protection against disease caused by a selected pathogen and for use as and for the generation of diagnostic reagents and kits.
SUMMARY OF INVENTION
The present invention includes novel recombinant conjugate antibody molecules which have been genetically modified to contain an antigen moiety for delivery of the antigen moiety to antigen-presenting cells of the immune systems.
Accordingly, in one aspect of the present invention, there is provided a conjugate antibody molecule, comprising a monoclonal antibody moiety specific for a surface structure of antigen-presenting cells genetically modified to contain at least one antigen moiety exclusively at at least one preselected site in the monoclonal antibody. The conjugate antibody molecule is capable of delivering the antigen moiety to the antigen presenting cells of a host and capable of eliciting an immune response to the antigen moiety in the host.
Genetically modifying the antibody moiety to contain the antigen moiety only at preselected sites ensures that a product with consistent composition and structure is obtained.
The antigen presenting cells may be any convenient antigen-presenting cells of the immune system, including class I or class II major histocompatibility expressing cells (MHC), B-cells, T-cells or professional antigen-presenting cells including dendritic cells, and CD4
+
cells.
The at least one antigen moiety preferably is located at at least one end of at least one of the heavy and light chain of the monoclonal antibody moiety, particularly the C-terminal end of both the heavy and light chain. The at least one antigen moiety is preferably directly linked with the C-terminal end of both the heavy and light chains of the monoclonal antibody moiety.
One feature of the present invention is the ability to obtain an enhanced immune response to an antigen without the use of an adjuvant. Accordingly, in one embodiment of the invention, the at least one antigenic moiety may comprise an inherently weakly-immunogenic antigen moiety. The at least one antigen moiety may comprise a plurality of antigen moieties, which may be the same or different. In addition, the at least one antigen moiety may be a peptide having 6 to 100 amino acids and containing at least one epitope.
The novel conjugate antibody molecules provided herein are produced by recombinant procedures which include the provision of novel nucleic acid molecules and vectors containing the same.
In accordance with another aspect of the present invention, there is provided a nucleic acid molecule comprising a first nucleotide sequence encoding a chain of a monoclonal antibody specific for a surface structure of antigen-presenting cells selected from the group consisting of the heavy chain and the light chain of the monoclonal antibody, a second nucleotide sequence encoding at least one antigen and a third nucleotide sequence comprisin
Anand Naveen N.
Barber Brian H.
Caterini Judith E.
Cates George C.
Klein Michel H.
Aventis Pasteur Limited
Saunders David
Sim & McBurney
Tung Mary Beth
LandOfFree
Chimeric antibodies for delivery of antigens to selected... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Chimeric antibodies for delivery of antigens to selected..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chimeric antibodies for delivery of antigens to selected... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2449246