Chilling pitcher

Refrigeration – Cooled enclosure – Portable receptacle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C062S530000, C220S592160

Reexamination Certificate

active

06295831

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
This invention relates to a chilling pitcher with a compartment for holding a beverage and an arcuate dividing wall that forms a wedge-shaped chamber for holding a cooling medium such as ice chips.
BACKGROUND OF THE INVENTION
During the warm summer months, many people enjoy being outside to enjoy a warm sunny day, a nice view or a refreshing breeze. Restaurants and bars have adapted to this preference by providing outdoor eating and gathering areas, as well as entertainment facilities such as volleyball courts and the like. Yet, most popular summer-time drinks are served and best enjoyed cold, or at temperatures below 50° Fahrenheit. Although the heat, sun and breeze accelerate the warming of these drinks, ordinary serving containers such as a glass or plastic pitcher are not designed to keep the beverage cool. While ice can be added to some beverages such as ice tea or lemon aid, the dilution of the beverage is not desired for other drinks such as beer or wine. The warming of the beverage is particularly problematic when a group of people orders several pitchers, because some of the pitchers may remain full for a period of time.
A variety of chilling pitchers have been designed to keep beverages cool. These pitchers typically have a multi-compartment design that includes a separate cooling compartment. Examples of such pitcher are shown in U.S. Pat. Nos. 93,001 to Pietsch, 672,025 to Walsh, 2,075,137 to Rosen, 2,362,223 to Platkin, 3,282,068 to Cain, 4,843,836 to Childers, 5,299,433 to Harms, 5,487,486 to Meneo, 5,732,567 to Anderson and 5,799,501 to Leonard, the contents of which are incorporated by reference herein. A cooling medium such as ice is placed in the cooling chamber. The beverage is cooled when heat flows from the beverage through the wall separating the two compartments and is absorbed by the ice. The ice then melts, and water accumulates at the bottom of the cooling compartment.
One problem with conventional chilling pitchers is the location and shape of the cooling compartment. The cooling compartment is frequently located in the center of the pitcher and projects up from the base so that the compartment is surrounded as much as possible by the beverage. This cantilevered structure is susceptible to cracking or breaking at the base. To add strength, some cooling compartment designs are given an inverted conical shape with a wider base and narrower top. Unfortunately, as the ice melts it falls away from the wall dividing the two compartments. The air pocket between the ice and the divider wall adds thermal resistance that decreases the cooling rate of the pitcher. The cold meted water also flows to the bottom of the cooling chamber and away from most of the divider wall contacting the beverage. This reduces the cooling efficiency of the pitcher.
Another problem with conventional chilling pitchers is that they fail to capitalize on the thermal heat exchange that can be achieved near the top of the pitcher. The cooling rate may even improve near the top of the pitcher because warmer masses tend to rise and a greater mass of liquid is located near the top of a conical pitcher. Yet, conventional chilling pitchers have divider walls with an incremental surface area that remains constant or decreases as the wall extends toward the top of the pitcher. In other words, the divider wall has proportionally the same or less surface area near the top of the pitcher than at the bottom. While this may be acceptable when a pitcher is almost empty, it is not appropriate to cool a full or nearly full pitcher.
A further problem with conventional chilling pitchers is that the divider wall has a uniform thickness from top to bottom. The thickness of the divider wall is not reduced near the top of the pitcher to reduce the thermal resistance of the wall and improve the cooling rate or efficiency of the pitcher.
A still further problem with conventional chilling pitchers is that the shape of the cooling compartment is not adapted to compactly receive the ice produced by many commercially available ice machines. The sharply curved walls forming the cylindrical or conical shaped cooling compartment do not readily accommodate square ice cubes or disc shaped ice chips in a compact manner. A great deal of air space remains when the ice cubes or chips are poured or scooped into the compartment, particularly near the top of a conical compartment. The surface of the ice does not tend to lay flush against the surface of the divider wall. Instead, a number of air pockets are formed along the surface of the divider wall, which decreases the cooling rate to the beverage. These drawbacks further reduce the cooling rate and efficiency of the pitcher.
A still further problem with conventional chilling pitchers is that they are not designed to develop convection currents that mix warm and cool masses of the beverage and maintained the beverage at a uniform temperature throughout the pitcher. By locating the cooling compartment near the bottom of the pitcher, the cooler mass of beverage settles and tends to stay near the bottom. Because the warmer mass of beverage rises and is not exposed to the cooling compartment, the warm beverage tends to stay near the top of the pitcher.
A still further problem with conventional chilling pitchers is that the cooling compartment has a narrow opening that makes them difficult to fill and empty. In some designs, the cooling compartment may even decrease in width or cross-sectional area near its opening. When the ice melts, the ice cubes and chips can fuse together to create a larger mass of ice. Should the pitcher be emptied before the mass of ice melts, the ice mass may be stuck inside the narrow opening of the cooling compartment. This can slow down the refilling of the cooling chamber and the reusing of the pitcher.
A still further problem with many conventional chilling pitchers is their multi-piece construction. Some designs have a cooling compartment that is separable from the rest of the pitcher. These designs present sanitary problems should the cooling compartment be handled improperly such as by setting it down on a dirty bar counter before placing it in the beverage. Other chilling pitcher designs locate the cooling compartment opening on the side or bottom of the pitcher and require a cover to close the cooling compartment during use to keep the ice falling out. The cover slows down the filling and refilling process, and requires a leek proof seal that inevitably wears out. These designs also inhibit the addition of ice to the cooling compartment during use. Still other chilling pitcher designs require a cap or lid to ensure that ice and water do not spill out of the cooling chamber when pouring the beverage into a glass or cup. When pouring the beverage, the divider wall reaches a horizontal position prior to emptying the pitcher, and ice and water would slide and flow across the wall and into the beverage unless stopped by the cap or lid. Each of these multi-piece designs increases the cost of the pitcher, and complicates the washing, drying and storing of the pitcher.
A still further problem with conventional chilling pitchers is that the centrally located cooling compartment makes it difficult to fill the beverage compartment via a commercial pressurized dispenser. The divider wall forming the compartment can cause the beverage to splatter out of the pitcher. The divider wall can also cause excessive foaming of a carbonated beverage and decrease the amount of beverage poured into the pitcher. Moreover, in commercial establishments, the server often sets the pitcher under a dispensing spout while filling the pitcher, and gathers glasses or other items needed by the customer. Conventional chilling pitchers can inhibit the productivity of the server by increasing the time and attention required to fill the pitcher.
The present invention is intended to solve these and other problems.
BRIEF DESCRIPTION OF THE INVENTION
The present invention relates to a molded, one-piece, chilling pitcher with a compartment for holding a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Chilling pitcher does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Chilling pitcher, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chilling pitcher will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2562998

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.