Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Food or edible as carrier for pharmaceutical
Reexamination Certificate
1998-02-23
2002-08-13
Webman, Edward J. (Department: 1617)
Drug, bio-affecting and body treating compositions
Preparations characterized by special physical form
Food or edible as carrier for pharmaceutical
C424S488000
Reexamination Certificate
active
06432442
ABSTRACT:
FIELD OF THE INVENTION
The present invention is directed at a soft, chewable pharmaceutical dosage form. More particularly, the present invention is directed to an oral delivery system for administering a pharmaceutical agent, medicament or other active ingredient by employing a soft, chewable matrix to incorporate the active ingredient.
BACKGROUND OF THE INVENTION
Pharmaceutical and nutritional supplement dosage forms intended for oral administration are typically provided in solid form as tablets, capsules, pills, lozenges, or granules. The tablet form is swallowed whole, chewed in the mouth, or dissolved sublingually. Absorption of the active moiety depends upon its release from the dosage form and may be controlled by several different technologies.
Chewable systems are often employed in the administration of pharmaceuticals, where it is impractical to provide a tablet for swallowing whole. The act of chewing helps to break up the tablet particles as the tablet disintegrates and may increase the rate of absorption by the digestive tract. Chewable systems are also advantageous where it is desirable to make an active ingredient available topically in the mouth or throat for both local effects or systemic absorption. Chewable dosage forms are also utilized to improve drug administration in pediatric and geriatric patients.
Palatability and “mouthfeel” are important characteristics to be considered in providing a dosage form, or matrix, for an active pharmaceutical medicament. Unfortunately, many pharmaceuticals and other active ingredients have a bitter or otherwise unpalatable taste, or an unacceptable mouthfeel, due to the grittiness or chalkiness of the compound, or both. These characteristics make it difficult to prepare acceptable dosage forms using the current state of the art for chewable dosage forms, since the objectionable taste and/or mouthfeel make it less likely to obtain compliance by the user.
As a result, several approaches have been tried in attempting to overcome these problems. The poor taste of a pharmaceutical or other active ingredient may be masked by using suitable flavoring compounds, and/or sweeteners. Encapsulation of the active ingredient may also serve to mask bitterness and other undesirable tastes. These approaches do not effect the physical state of the dosage from currently employed in the art. For example, chewable vitamin tablets are typically prepared as a compressed tablet, incorporating one or more active ingredients (e.g., vitamins), a sweetener and flavoring agent to mask the taste of the active ingredient, and a binder, typically microcrystalline cellulose.
Generally, chewable tablets are made by direct compression of a mixture of tabulating compounds including the active ingredient, flavoring, binders, etc. The mixture is fed into a die cavity of a tablet press and a tablet is formed by applying pressure. Hardness of the resulting tablet is a direct function of the compression pressure employed. A softer tablet, having an easier bite-through, may be prepared by adding a disintegrant, such as alginic acid, to the tablet mix. Alternatively, a softer tablet may be formed by employing reduced compression pressures. In either case, the resulting tablet is softer, fragile, brittle, and easily chipped.
Attempts have been made to reduce the grittiness and/or chalkiness of the compressed tablet by coating particles of the active ingredient with oils or fats prior to incorporation into the delivery system. See U.S. Pat. Nos. 4,327,076 and 4,609,543, incorporated herein by reference. In this way, the grittiness or chalkiness of the particles in the mouth is reduced. After swallowing, the oil or fat is digested and the drug particle can dissolve in the gastric contents. However, the addition of particles coated with fats or oils to the tablet mix can decrease the binding of the tableting ingredients and cause a reduction in the tablet hardness.
Other techniques for providing a chewable delivery system involve the use of a gum base. Gum bases are insoluble elastomers which form the essential element for chewing gum. The gum base is typically blended with one or more sweeteners to obtain a confectionery gum. A coating containing the active ingredient is then applied over the confectionery gum. As the dosage form is chewed, the coating fractures and/or dissolves in the mouth and is swallowed. Despite these disclosures there is an ongoing need for a chewable delivery system, particularly for children, which is pleasant tasting and preferably in a form which is easy to chew and swallow.
SUMMARY OF THE INVENTION
The present invention provides a chewable, gelatin based matrix which contains pharmaceutically active ingredients. More particularly, the present invention provides gelatin based matrices that can be chewed and swallowed easily. In preferred embodiments of the invention, hydrocolloid ingredients are added to the gelatin matrix in order to enhance the physical properties of the gelatin matrix and increase the user acceptance. The addition of a hydrocolloid to the gelatin typically reduces the rubbery nature of the gelatin, improves the mold release characteristics, decreases sticking to the teeth, improves the mouthfeel, and improves the ability to chew and swallow the product in the desired period of time.
DETAILED DESCRIPTION OF THE INVENTION
The gelatin used in the present invention is selected from a wide variety of sources that are pharmaceutically acceptable types, including gelatin-glycerin, pure gelatin, or sugar gelatins. These and other suitable gelatins are disclosed in
Remington's Practice of Pharmacy
, Martin & Cook, 17th edition, p. 1298. The level of gelatin used in the present invention typically comprises from about 1 to about 20 weight percent, preferably from about 3 to about 15 and most preferably from about 4 to about 10 weight percent on a dry solids basis. Typically, the gelatin is employed in combination with hydrocolloid such that the gelatin/hydrocolloid is up to about 40 weight percent, generally from about 2 to about 30 weight percent, and preferably from about 6 to about 20 weight percent on a dry solids basis. In a highly preferred embodiment the hydrocolloid is about 10 weight percent on a dry solids basis of the gel-forming matrix.
The level of gelatin employed in the invention is related to bloom strength. Those with skill in the art will recognize that bloom strength is a measure of the gelling property of a particular gelatin, with higher bloom strengths relating to the ability of the gelatin to more strongly crosslink at an equal concentration of gelatin. The bloom strengths of the gelatins employed in the present invention are from about 150 to about 350 with a preferred value of about 250. A bloom strength of about 250 provides the proper mouthfeel, texture and chewing characteristics to the gelatin matrix of the invention.
In preferred embodiments of the invention, hydrocolloids are added to the gelatin matrix in order to improve the properties of the gelatin matrix. As used herein, hydrocolloid is understood to mean any water soluble material that swells when contacted with water. Suitable hydrocolloids include natural and modified gums, cellulosics, modified cellulosics, pectins, mucillages, modified starches, noncellulosic polysaccharides, algal polysaccharides and mixtures thereof. More specifically the hydrocolloids include starch, agar-agar, microcrystalline cellulose, methylcellulose, hydroxypropyl cellulose (HPC), hydroxypropyl methylcellulose (HPMC), xanthan gum, carrageenan gum, locust bean gum, alginates, acacia, carboxymethylcellulose (CMC), karaya gum, acacia gum, sodium alginate, sodium CMC, guar gum, tragacanth, mixtures of the hydrocolloids and the like.
When using various hydrocolloid ingredients, various ratios of gelatin/hydrocolloids have been discovered which have been found to possess beneficial mouthfeel, texture and chewing characteristics. For example, when using starch, the weight ratio of from about 1:1.3 to about 1:1.8 possesses desirable characteristics. More preferably
Buehler Gail K.
Bunick Frank
Mc-Neil-PPC, Inc.
Webman Edward J.
LandOfFree
Chewable product does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Chewable product, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chewable product will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2924890