Chemiluminescent energy transfer assays

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007400, C435S007900, C435S007920, C435S007210, C435S966000, C435S968000, C435S975000, C549S221000, C549S214000, C556S405000, C558S086000, C558S099000, C558S167000, C558S184000, C558S193000, C558S197000

Reexamination Certificate

active

06287767

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to the energy transfer chemilumine-scent assays for the determination of the presence or amount of a biological substance in surface-bound assays using 1,2-dioxetanes in connection with hydrophobic fluorometric substrates such as AttoPhos™ as chemiluminescent substrates for enzyme-labeled fluorometric substrate targets or probes. The chemiluminescence of the dioxetane donor-AttoPhos™ acceptor substrate pair can be enhanced by the addition of a polymeric enhancer. Further enhancement can be achieved by adding, in sequence, AttoPhos™ and then the 1,2-dioxetane.
BACKGROUND OF THE INVENTION
Chemiluminescent assays for the detection of the presence or concentration of a biological substance have received increasing attention in recent years as a fast, sensitive and easily read method of conducting bioassays. In such assays, a chemiluminescent compound is used as a reporter molecule, the reporter molecule chemiluminescing in response to the presence or the absence of the suspected biopolymer.
A wide variety of chemiluminescent compounds have been identified for use as reporter molecules. One class of compounds receiving particular attention is the 1,2-dioxetanes. 1,2-dioxetanes can be stabilized by the addition of a stabilizing group to at least one of the carbon atoms of the dioxetane ring. An exemplary stabilizing group is spiro-bound adamantane. Such dioxetanes can be further substituted at the other carbon position with an aryl moiety, preferably phenyl or naphthyl, the aryl moiety being substituted by an oxygen which is, in turn, bound to an enzyme-labile group. When contacted by an enzyme capable of cleaving the labile group, the oxyanion of the dioxetane is formed, leading to decomposition of the dioxetane and spontaneous chemiluminescence. A wide variety of such dioxetanes are disclosed in U.S. Pat. No. 5,112,960. That patent focuses on dioxetanes which bear a substituent on the adamantyl-stabilizing group, such as halo substituents, alkyl groups, alkoxy groups and the like. Such dioxetanes represent an advance over earlier-recognized dioxetanes, such as 3-(4-methoxyspiro[1,2-dioxetane-3,2′-tricyclo]-3.3.1.1
3,7
]decan]-4-yl) phenyl phosphate, and in particular, the disodium salt thereof, generally identified as AMPPD®. The chlorine-substituted counterpart, which converts the stabilizing adamantyl group from a passive group which allows the decomposition reaction to go forward, to an active group which gives rise to enhanced chemiluminescence signal due to faster decomposition of the dioxetane anion, greater signal-to-noise values and better sensitivity, is referred to as CSPD®. Other dioxetanes, such as the phenyloxy-&bgr;-D-galactopyranoside (AMPGD) are also well-known, and can be used as reporter molecules. These dioxetanes, and their preparation, do not constitute an aspect of the invention herein, per se.
Assays employing these dioxetanes can include conventional assays, such as Southern, Northern and Western blot assays, DNA sequencing, ELISA, as well as other liquid phase and mixed phase assays performed on membranes and beads. In general, procedures are performed according to standard, well-known protocols except for the detection step. In DNA assays, the target biological substance is bound by a DNA probe with an enzyme covalently or indirectly linked thereto, the probe being admixed with the sample immobilized on a membrane, to permit hybridization. Thereafter, excess enzyme complex is removed, and dioxetane added to the hybridized sample. If hybridization has occurred, the dioxetane will be activated by the bound enzyme, leading to decomposition of the dioxetane, and chemiluminescence. In solution-phase assays, the enzyme is frequently conjugated to a nucleic acid probe or immune complexed with an antibody responsive to the target biological substance, unbound components being removed, and the dioxetane added, chemiluminescence being produced by the decomposition of the dioxetane activated by the amount of enzyme present. In cases where the enzyme itself is the target, the dioxetane need only be added to the sample. Again, a wide variety of assay modalities has been developed, as disclosed in U.S. Pat. No. 5,112,960, as well as U.S. Pat. No. 4,978,614.
It has been well-known that light-quenching reactions will occur if the dioxetane decomposition occurs in a protic solvent, such as water. As the samples suspected of containing or lacking the analyte in question are generally biological samples, these assays generally take place in an aqueous environment. The light-quenching reactions therefor may substantially reduce the chemiluminescence actually observed from the decomposition of the dioxetane. In assays involving low-level detections of particular analytes, such as nucleic acids, viral antibodies and other proteins, particularly those prepared in solution or in solution-solid phase systems, the reduced chemiluminescence observed, coupled with unavoidable background signals, may reduce the sensitivity of the assay such that extremely low levels of biological substances cannot be detected. One method of addressing this problem is the addition of water-soluble macromolecules, which may include both natural and synthetic molecules, as is disclosed in detail in U.S. Pat. No. 5,145,772. The disclosure of this patent is incorporated herein, by reference. To similar effect, U.S. Pat. No. 4,978,614 addresses the addition of various water-soluble “enhancement” agents to the sample, although the patent speaks to the problem of suppressing non-specific binding reactions in solid state assays. In U.S. Pat. No. 5,112,960, preferred water-soluble polymeric quaternary ammonium salts such as poly(vinylbenzyltrimethylammonium chloride) (TMQ) poly(vinylbenzyltributylammonium chloride) (TBQ) and poly(vinylbenzyldimethylbenzylammonium chloride) (BDMQ) are identified as water-soluble polymeric quaternary ammonium salts which enhance chemiluminescence and provide greater sensitivity by increasing the signal-to-noise ratio. Similar phosphonium and sulfonium polymeric salts are also disclosed.
This enhancement is achieved, at least in part, through the formation of hydrophobic regions in which the dioxetane oxyanion is sequestered. Decomposition in these hydrophobic regions enhances chemiluminescence, because water-based light quenching reactions are suppressed. Among the recognized water-soluble quaternary polymer salts employed, TBQ provides unexpectedly superior enhancement, through this hydrophobic region-forming mechanism.
The chemiluminescent enhancement achieved by the addition of water-soluble polymeric substances such as ammonium, phosphonium and sulfonium polymeric salts can be further improved by the inclusion, in the aqueous sample, of an additive, which improves the ability of the quaternary polymeric salt to sequester the dioxetane oxyanion and the resulting excited state emitter reporting molecule in a hydrophobic region. Thus, the combination of the polymeric quaternary salt and the additive, together, produce an increase in enhancement far beyond that produced separately by the addition of the polymeric quaternary salt, or the additive, which, when a surfactant or water-soluble polymer itself, may enhance chemiluminescence to a limited degree. The synergistic combination of the polymeric quaternary salt and additives gives enhancement effects making low-level, reliable detection possible even in aqueous samples through the use of 1,2-dioxetanes. The polymeric quaternary salts, coupled with the additives, are sufficiently powerful enhancers to show dramatic 4 and 5-fold increases at levels below 0.005 percent down to 0.001 percent. Increased signal, and improved signal
oise ratios are achieved by the addition of further amounts of the polymeric quaternary salt, the additive, or both, in amounts up to as large as 50 percent or more. In general, levels for both polymeric quaternary salt and additive can be preferably within the range of 0.01-25 percent, more preferably from 0.025-15 percent by weigh

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Chemiluminescent energy transfer assays does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Chemiluminescent energy transfer assays, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chemiluminescent energy transfer assays will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2504191

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.