Organic compounds -- part of the class 532-570 series – Organic compounds – Heterocyclic carbon compounds containing a hetero ring...
Reexamination Certificate
2001-10-31
2004-04-20
Ceperley, Mary E (Department: 1641)
Organic compounds -- part of the class 532-570 series
Organic compounds
Heterocyclic carbon compounds containing a hetero ring...
C435S007500, C435S007950, C546S102000
Reexamination Certificate
active
06723851
ABSTRACT:
SUMMARY OF THE INVENTION
This invention relates to a group of novel compounds. In one embodiment, the novel compounds are novel chemiluminescent compounds.
Furthermore, it has been discovered that these compounds offer tremendous benefits when they are employed as “signal molecules” in chemical or biochemical assays. “Signal molecules” are molecules which are detected to determine the level of analytes in the sample. It has been surprisingly discovered that the assays employing these compounds have sensitivities that are several orders of magnitudes over that of other chemiluminescent assays, for example the presently existing assays employing acridinium esters. For example, the limit of detection (LOD) for the present immunoassays with acridinium esters is in the range of 10
−15
to 10
−18
moles of analyte, whereas the LOD for assays employing the novel compound is in the range of about 10
−16
to 10
−19
, preferably 10
−17
to 10
−20
moles of analyte.
Additionally, the methods for detecting analytes of the present invention are safe and simple. For example, the present assays do not require the use of radioactive isomers. Also, the novel compounds employed in these methods are highly compatible with blood and other clinical specimens.
In accordance with the present invention, the method of detecting an analyte comprises the steps of binding compound to the analyte and/or the immediate surrounding areas, and detecting the amount of the bound compound.
Further in accordance with the present invention, the binding of the compound to the analyte and/or the immediate surrounding area may be catalyzed by an enzyme.
Still further in accordance with the present invention, the bound compounds emit chemiluminescent signals and the signal are detected. In one embodiment, the amount of chemiluminescent signals emitted is directly proportional to the amount of analyte in the sample.
Any feature or combination of features described herein are included within the scope of the present invention provided that the features included in any such combination are not mutually inconsistent as will be apparent from the context, this specification, and the knowledge of one of ordinary skill in the art. Additional advantages and aspects of the present invention are apparent in the following detailed description and claims.
DETAILED DESCRIPTION OF THE INVENTION
The present invention is, in part, based upon the discovery that a novel compound may be employed in an assay to detect analytes.
The novel compound (Compound A) has the general formula A:
wherein R1 and R2 are independently selected from the group consisting of a bond, C1-C10 hydrocarbon, substituted alkyl, unsubstituted alkyl, aryl, peptide, (CH
2
)
m
SO
2
, NH(CH
2
)
m
, (CH
2
)
m
,
R1 may be located anywhere on the ring. For example, R1 may be at the ortho, meta or para position. R3 is OH or
R4, R5, R6, R7, R8, R9, R10, R11, R12, R13 and R14 may be located anywhere on the ring and are independently selected from the group consisting of a H, hydroxide, methyl, (CH
2
)
m
SO
3
, halide, nitro, —CN, —SO3, C1-C10 hydrocarbon, alkoxy, —NHC═O(C1-C10 hydrocarbon), —C═O(C1-C10 hydrocarbon), C═ONH(C1-10 hydrocarbon), aryl, and cyclic ring structure; m and n are independently 0 to about 10; X is a counter ion including CH
3
SO
4
−
, OSO
2
F
−
, Cl
−
Br
−
, OSO
2
CH
3
−
and OSO
2
C
4
H
9
−
.
In one embodiment, R1 is (CH
2
)
m
SO
2
and R2 is NH(CH
2
)
m
. For example, the novel compound (Compound B) may have the general formula B:
R
10
may be a methyl or a (CH
2
)
3
SO
3
.
In one embodiment, the novel compound has a shelf life in excess of six months, preferably in excess of a year. For example, a compound of this invention may be stored at pH of about 5 to about 7, and at a temperature of about 2 to about 8 degrees Celsius for over a year.
In one embodiment, a compound of this invention may include a deposition component and an acridinium derivative. Deposition components are components which may be activated, for example by enzymes, and deposit at a local area. Non-limiting deposition components include penicillins, cephamycins, substituted phosphates, beta-glactopyranosylglycoside and the like. Non-limiting examples of acridinium derivatives, preferably acridinium ester derivatives, which may be employed within this invention, are disclosed in the following U.S. Pat. Nos., all of which are incorporated by referenced herein in their entireties: Schulenberg, U.S. Pat. No. 4,150,134; Law et al., U.S. Pat. No. 4,745,181, and U.S. Pat. No. 4,918,192; Chang et al., U.S. Pat. No. 4,927,769; Campbell, U.S. Pat. No. 4,946,958; Arnold, Jr. et al., U.S. Pat. No. 4,950,613; Law et al., U.S. Pat. No. 5,110,932; Arnold, Jr. et al., U.S. Pat. No. 5,185,439; Law et al., U.S. Pat. No. 5,227,489; Law et al., U.S. Pat. No. 5,241,070; McCapra et al., U.S. Pat. No. 5,281,712; McCapra et al., U.S. Pat. No. 5,284,951; Beheshiti et al., U.S. Pat. No. 5,190,936; McCapra et all, U.S. Pat. No. 5,321,136 and U.S. Pat. No. 5,338,847; Law et al., U.S. Pat. No. 5,395,752; Ramakrishnan, U.S. Pat. No. 5,395,938; Sato et al., U.S. Pat. No. 5,438,139; Law et al., U.S. Pat. No. 5,449,556; Mattingly et al., U.S. Pat. No. 5,468,646; Shah et al., U.S. Pat. No. 5,468,649; Zoomer et al., U.S. Pat. No. 5,521,103; Law et al., U.S. Pat. No. 5,538,901; Mattingly et al., U.S. Pat. No. 5,543,524 and U.S. Pat. No. 5,565,570; Sato et al., U.S. Pat. No. 5,594,112; Law, U.S. Pat. No. 5,595,875; Law et al., U.S. Pat. No. 5,656,426; Law, U.S. Pat. No. 5,656,500; Law, U.S. Pat. No. 5,663,074; Lee et al., U.S. Pat. No. 5,672,475; Law et al., U.S. Pat. No. 5,702,887; Kinkel et al., U.S. Pat. No. 5,783,696; and Mattingly et al., U.S. Pat. No. 5,783,699. In one embodiment, the deposition component and the acridinium derivative directly link to each other. In another embodiment, the deposition component and the acridinium component is linked through another molecule, a linker. The linker may be molecules that are similar to that of R1.
The novel compound of this invention may be employed in an assay to detect an analyte. An analyte may be any chemical or biological substance. Non-limiting examples of analytes include hormones, peptides, macromolecules, macromolecules, proteins, tissues, mixtures thereof and the like. The compound of the present invention may be adaptable for use in various types of assays, for example, gel, blotting, in situ hybridization, and immunohistochemical assays.
In a broad embodiment, the method of detecting an analyte in a sample includes binding the compound to the analyte. In one embodiment, the compound may bind to areas immediately surrounding the analyte.
Without wishing to limit the invention to any theory or mechanism, it is believed that a compound of the present invention could bind to an analyte and other molecules, proteins and areas immediately surrounding the analyte when the compound is exposed to an enzyme, for example a peroxidase, preferably a horseradish peroxidase (HRP).
In one embodiment, the enzyme is brought close to the analyte to initiate the binding of the compound to the analyte and/or the surrounding molecules and areas. For example, a locator component may be employed to locate the analyte.
A locator component is any molecule or set of molecules capable of selectively binding to an analyte. For example, a locator component may be an aptamer or a molecular imprint polymer. In one embodiment, a locator component is an antibody, or a portion of an antibody, for example a Fab portion, capable of binding to an analyte. The antibody of the present invention may be monoclonal or polyclonal. Various methods are known in the art to produce an antibody specific toward a certain antigen, for example a partner component. For example, an antibody may be raised from a rabbit injected with an antigen, the antigen being the partner component or a part thereof. Additionally, synthetic antibodies may also be made. (See U.S. Pat. No. 5,110,833, the disclosure of which is incor
Garrity Martha
Miller Phillip
Ceperley Mary E
Hollrigel Greg S.
Quest Diagnostics Investment Incorporated
Stout Donald E.
Stout, Uxa Buyan & Mullins, LLP
LandOfFree
Chemiluminescent compounds and use thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Chemiluminescent compounds and use thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chemiluminescent compounds and use thereof will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3230895