Chemical method to bond silicone to metal

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis – Having plural layers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C427S002240, C427S002250, C427S002260, C623S900000, C623S901000

Reexamination Certificate

active

06210437

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the field of polymer coated, implantable medical devices. More particularly, it concerns such medical devices comprising a first layer of a metal bonded to a short chain silicone terminating with silicon hydride, and a second layer of a silicone polymer covalently bonded to the silicon hydride.
2. Description of Related Art
It has become common to treat a variety of medical conditions by implanting medical devices into the esophagus, trachea, colon, biliary tract, urinary tract, vascular system, or other location in the body of a human or animal patient. For example, in the vascular system, valves in the heart may weaken as a result of age, injury, or disease, impairing proper blood flow and posing a health risk to the patient. Such weakened naturally-occurring heart valves may be replaced with prosthetic heart valves.
Well-known in the art are prosthetic heart valves which comprise a polymer stent to give the valve shape, structure, and rigidity, over which is sewn tissue taken from an animal heart valve. Such prosthetic heart valves have a number of shortcomings. First, the introduction of animal tissue into another species raises the risk of adverse body responses, such as rapid thrombogenic reaction and inflammatory tissue reactions. Second, the animal tissue is mechanically connected to the stent, and thus the heart valve has low shear resistance.
Attempts have been made to construct heart valves from different materials and adhere their components in different ways. For example, metal stents have been used and animal tissue sewn over them. In another example, polymers have been used in place of animal tissue over metal stents. Polymeric materials avoid the risk of immunogenicity posed by use of animal tissue, but heart valves comprising polymeric materials covering metal stents still suffer from low shear resistance.
In order to increase the shear resistance of heart valves comprising polymeric materials covering metal stents, coupling agents, such as are available from Dow Corning, may be used. Such coupling agents aid physical adhesion of the polymeric coating to the stent, but the coated articles still have relatively low shear resistance and longevity.
Although the above discussion has focused on the example of prosthetic heart valves, it is applicable to other implantable medical devices, such as catheters, cannulae, vascular grafts, pacemaker leads, defibrillator leads, needles, and orthopedic devices, among others.
Therefore, it is desirable to have implantable medical devices which do not stimulate adverse body reactions. It is also desirable to have implantable medical devices highly resistant to forces acting to shear two components apart. It is also desirable to provide a method for making implantable devices which exhibit both of the desirable traits given above.
SUMMARY OF THE INVENTION
Herein are disclosed implantable medical devices comprising a first layer of a metal bonded to a short chain silicone terminating with a silicon hydride, and over the first layer a second layer of silicone polymer covalently bonded to the silicon hydride of the short chain silicone. The second layer of silicone polymer is non-immunogenic and renders the implantable medical device non-toxic. The chemical crosslinking of the silicone polymer to the metal via bonding to the short chain silicone gives the implantable medical device greater shear resistance than does mechanical adhesion.
In another embodiment, the present invention relates to a method for making a device, said device comprising a first layer comprising a metal and a short chain silicone terminating with silicon hydride, and a second layer comprising silicone polymer bonded to the silicon hydride of the short chain silicone. The method comprises providing the metal; depositing the short chain silicone on the outer surface of the metal under conditions in which bonding between the short chain silicone and the metal occurs, thereby forming the first layer; molding a silicone prepolymer to the outer surface of the first layer, the silicone prepolymer thereby forming a second layer; and polymerizing the silicone prepolymer to form a second layer of silicone polymer, the second layer covalently bonded to the silicon hydride of the short chain silicone in the first layer.


REFERENCES:
patent: 4652459 (1987-03-01), Englehaardt
patent: 5356433 (1994-10-01), Rowland et al.
patent: 5411553 (1995-05-01), Gerace et al.
patent: 5736251 (1998-04-01), Pinchuk
Hirayama et al. “Strongly Attached Untrathin polymer layers on metal surfaces obtained by activation of Si-H bonds”, Appl. Surf. Sci. 143(1-4), 256-264, 1999.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Chemical method to bond silicone to metal does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Chemical method to bond silicone to metal, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chemical method to bond silicone to metal will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2539619

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.