Chemical mechanical polishing slurry useful for copper...

Compositions – Etching or brightening compositions

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C252S079200, C252S079300, C252S079400

Reexamination Certificate

active

06569350

ABSTRACT:

BACKGROUND OF THE INVENTION
(1) Field of the Invention
This invention concerns a chemical mechanical polishing slurry including a complexing agent, at least one oxidizer, at least one abrasive, and a film forming agent. The chemical mechanical polishing slurry is useful for polishing metal layers and thin-films associated with semiconductor manufacturing. More particularly this invention concerns a chemical mechanical polishing slurry that is especially adapted for polishing multiple metal layers and thin-films where one of the layers or films is comprised of copper or a copper containing alloy.
(2) Description of the Art
Integrated circuits are made up of millions of active devices formed in or on a silicon substrate. The active devices, which are initially isolated from one another, are interconnected to form functional circuits and components. The devices are interconnected through the use of well-known multilevel interconnections. Interconnection structures normally have a first layer of metallization, an interconnection layer, a second level of metallization, and sometimes a third and subsequent level of metallization. Interlevel dielectrics such as doped and undoped silicon dioxide (SiO
2
), are used to electrically isolate the different levels of metallization in a silicon substrate or well. The electrical connections between different interconnection levels are made through the use of metallized vias. U.S. Pat. No. 4,789,648, which is incorporated herein by reference, describes a method for preparing multiple metallized layers and metallized vias in insulator films. In a similar manner, metal contacts are used to form electrical connections between interconnection levels and devices formed in a well. The metal vias and contacts may be filled with various metals and alloys including titanium (Ti), titanium nitride (TiN), tantalum (Ta), aluminum copper (Al—Cu), aluminum silicon (Al—Si), copper (Cu), tungsten (W), and combinations thereof. The metal vias and contacts generally employ an adhesion layer such as titanium nitride (TiN) and/or titanium (Ti) to adhere the metal layer to the SiO
2
substrate. At the contact level, the adhesion layer acts as a diffusion barrier to prevent the filled metal and SiO
2
from reacting.
In one semiconductor manufacturing process, metallized vias or contacts are formed by a blanket metal deposition followed by a chemical mechanical polish (CMP) step. In a typical process, via holes are etched through an interlevel dielectric (ILD) to interconnection lines or to a semiconductor substrate. Next, a thin adhesion layer such as titanium nitride and/or titanium is generally formed over the ILD and is directed into the etched via hole. Then, a metal film is blanket deposited over the adhesion layer and into the via hole. Deposition is continued until the via hole is filled with the blanket deposited metal. Finally, the excess metal is removed by chemical mechanical polishing, (CMP) to form metal vias. Processes for manufacturing and/or CMP of vias are disclosed in U.S. Pat. Nos. 4,671,851, 4,910,155 and 4,944,836.
In a typical chemical mechanical polishing process, the substrate is placed in direct contact with a rotating polishing pad. A carrier applies pressure against the backside of the substrate. During the polishing process, the pad and table are rotated while a downward force is maintained against the substrate back. An abrasive and chemically reactive solution, commonly referred to as a “slurry” is applied to the pad during polishing. The slurry initiates the polishing process by chemically reacting with the film being polished. The polishing process is facilitated by the rotational movement of the pad relative to the substrate as slurry is provided to the wafer/pad interface. Polishing is continued in this manner until the desired film on the insulator is removed. The slurry composition is an important factor in the CMP step. Depending on the choice of the oxidizing agent, the abrasive, and other useful additives, the polishing slurry can be tailored to provide effective polishing to metal layers at desired polishing rates while minimizing surface imperfections, defects and corrosion and erosion. Furthermore, the polishing slurry may be used to provide controlled polishing selectivities to other thin-film materials used in current integrated circuit technology such as titanium, titanium nitride and the like.
Typically CMP polishing slurries contain an abrasive material, such as silica or alumina, suspended in an oxidizing, aqueous medium. For example, U.S. Pat. No. 5,244,523 to Yu et al. reports a slurry containing alumina, hydrogen peroxide, and either potassium or ammonium hydroxide that is useful to remove tungsten at predictable rates with little removal of the underlying insulating layer. U.S. Pat. No. 5,209,816 to Yu et al. discloses a slurry comprising perchloric acid, hydrogen peroxide and a solid abrasive material in an aqueous medium that is useful for polishing aluminum. U.S. Pat. No. 5,340,370 to Cadien and Feller discloses a tungsten polishing slurry comprising approximately 0.1M potassium ferricyanide, approximately 5 weight percent silica and potassium acetate. Acetic acid is added to buffer the pH at approximately 3.5.
U.S. Pat. No. 4,789,648 to Beyer et al. discloses a slurry formulation using alumina abrasives in conjunction with sulfuric, nitric, and acetic acids and deionized water. U.S. Pat. Nos. 5,391,258 and 5,476,606 disclose slurries for polishing a composite of metal and silica which includes an aqueous medium, abrasive particles and an anion which controls the rate of silica removal. Other polishing slurries for use in CMP applications are described in U.S. Pat. No. 5,527,423 to Neville et al., U.S. Pat. No. 5,354,490 to Yu et al., U.S. Pat. No. 5,340,370 to Cadien et al., U.S. Pat. No. 5,209,816 to Yu et al., U.S. Pat. Nos. 5,157,876, 5,137,544 to Medellin, and U.S. Pat. No. 4,956,313 to Cote et al.
There are various mechanisms disclosed in the prior art by which metal surfaces can be polished with slurries. The metal surface may be polished using a slurry in which a surface film is not formed in which case the process proceeds by mechanical removal of metal particles and their dissolution in the slurry. In such a mechanism, the chemical dissolution rate should be slow in order to avoid wet etching. A more preferred mechanism is, however, one where a thin abradable layer is continuously formed by reaction between the metal surface and one or more components in the slurry such as a complexing agent and/or a film forming layer. The thin abradable layer is then removed in a controlled manner by mechanical action. Once the mechanical polishing process has stopped a thin passive film remains on the surface and controls the wet etching process. Controlling the chemical mechanical polishing process is much easier when a CMP slurry polishes using this mechanism.
Efforts to develop copper CMP slurries are disclosed in the literature. The RPI effort (J. M. Steigerwald et al,
Electrochemical Potential Measurements during the Chemical-Mechanical Polishing of Copper Thin Films,
Mat. Res. Soc. Symp. 337, 133 (1994)) is focused on the use of ammonium compounds (ammonium nitrate, chloride, hydroxide), nitric acid, and alumina abrasive. Copper dissolution of 2 nm/min (as measured electrochemically) is assumed to proceed from a film-free surface. Polishing rates, however, are reported to be in excess of 400 nm/min. The discrepancy is explained by importance given to the mechanical action, forming Cu debris, which is then dissolved by solution. Selectivity factors are not given.
Q. Luo et al,
Chemical-Mechanical Polishing of Copper in Acidic Media,
Proceedings —First International Chemical-Mechanical Polish (CMP) for VLSI/LSI Multilevel Interconnection Conference (CMP-MIC), Santa Barbara, Feb. 22-23, (1996) discloses using a CMP slurry including a very aggressive etchant, Fe-nitrate, pH 1-2, in combination with an inhibitor (benzotriazole), a slurry stabilizing surfactant (poly-ethylene-glycol) and alumina. The chemical

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Chemical mechanical polishing slurry useful for copper... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Chemical mechanical polishing slurry useful for copper..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chemical mechanical polishing slurry useful for copper... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3050047

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.