Liquid purification or separation – With means to add treating material – With distinct reactor tank – trough or compartment
Reexamination Certificate
1999-12-10
2001-08-28
Simmons, David A. (Department: 1724)
Liquid purification or separation
With means to add treating material
With distinct reactor tank, trough or compartment
C210S443000, C422S264000, C422S277000, C137S268000
Reexamination Certificate
active
06280617
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates generally to the field of dispenser devices used to introduce into a flowing liquid small quantities of a chemical solution created by dissolving a solid or granular chemical. More particularly, the invention relates to such devices to be used as a component in assemblies of the type commonly used for filtration of water in circulation or supply systems, where the rate of introduction of the dissolved chemical into the water is controlled in a manner related to the flow volume of the water stream to insure proper concentration percentage. Even more particularly, the invention relates to replaceable dispensing means which comprise a cartridge which contains the solid chemical and are retained within a housing, where the dispensing means may be utilized with top or bottom exit housings.
It is desirable or necessary in many water supply or recirculation systems, such as water for household or industrial use, or water for use in spas and pools, to add certain chemicals to the water to control bacteria or fungal growth, corrosion, scale deposits, etc. Commonly known additives include chlorine, polyphosphate or sodium silicate. Such additives are typically supplied in solid or granular form for ease of handling, and must therefore be dissolved in liquid and introduced into the water flow. It is imperative that the chemical additives be supplied in the proper concentration, and it is important that the mechanism for adding the chemical solutions provide for proper rate introduction with little variation in concentration. Many conventional systems fail these criteria, the mechanisms being unable to prevent variations in concentration and introduction rates, especially in circumstances where the water flow is not continuous and varies in pressure.
The most simplistic solid chemical additive mechanisms simply divert all or a portion of the water flow stream through a container holding the solid chemical. The water flowing from the container will include an amount of dissolved chemical. These devices suffer from lack of dispensing control, since the amount of chemical present in the outflow is dependent on the volume of solid chemical in the container. As that volume decreases, the concentration of dissolved chemical in the outflow also decreases. Additionally, this type of system produces a highly concentrated chemical surge when water flow is resumed after being shut off for a period of time. Finally, variation in the water flow rate will not correspondingly alter the dissolving rate of the chemical, producing incorrect concentration amounts in the outflow.
Attempts have been made to develop a mechanism which addresses the problems encountered in correctly metering and controlling the chemical introduction and concentration rates, but known systems are either overly complicated or do not fully solve all the problems set forth above. A complicated mechanism is described in U.S. Pat. No. 4,780,197 to Schuman, which discloses a flow-through chemical dispenser cartridge positioned within the internal core of a filter which requires one or more operational valves to perform effectively. A more simplified approach is shown in U.S. Pat. No. 4,347,224 to Beckert et al. This patent discloses a flow housing which contains an internally mounted chemical cartridge. A small amount of the water flow is diverted into the bottom of the chemical cartridge and the chemical solution is drawn through a small aperture in the top of the cartridge by the pressure differential created by the flow of the bulk of the water passing through the housing. This apparatus provides a simple approach to solving the problems encountered in standard solid chemical systems, but the mechanism is just a variation of the standard system where a portion of the water stream is passed through the solid chemical before being returned to the main flow stream. The distinction in Beckert et al. is that the cartridge containing the solid chemical is mounted internal to a large housing through which all the water flows. The sizing of the cartridge is such to create an annular passage down to the bottom of the chemical cartridge, where the water flows through a plurality of liquid inlet holes, past the chemical and out the liquid outlet hole. In effect, the annular passage is just a substitute for a small bypass conduit as found in many old systems, and the problems associated with variations in concentration and surging would still be present.
A much improved design and construction for a flow-through chemical dispenser is shown in my U.S. Pat. No. 5,580,448, wherein a unique cartridge configuration is used to correctly meter and control the chemical introduction and concentration rates of the dissolved solid chemical into the liquid flow stream. The dispenser unit has an upper base member with inlet and outlet openings, and a depending housing is threaded onto the base. A dispenser means comprising an upper tube, an apertured midsection and a cartridge containing the solid chemical is coaxially mounted within the housing, such that water flows through an annular filter, into flow openings in the apertured midsection above the cartridge and out from the top of the upper tube. While the dispenser unit functions at optimum efficiency, the design of the dispenser means is such that it is useable only in dispenser units having upper outflow openings, unless extra conduits are provided to route the liquid after exit from the cartridge, and this limits its applicability to standard housing designs, many of which have bottom outflow openings.
It is an object of this invention to provide a dispenser mechanism which provides a steady state concentration of dissolved chemical, which introduces the chemical solution into the main water stream in amounts directed related to water flow rate or volume to maintain precise percentages of chemical solution, which does not produce excessive chemical concentration during periods of no water flow, and which does not introduce excessive amounts of dissolved chemical when water flow is resumed. It is an object to provide such a device where the cartridge containing the solid chemical is not a flow through cartridge, such that water is not passed through the solid chemical. It is an object to provide such a device where the chemical cartridge can be used alone or in combination with a hollow core filter. It is an object to provide such a device of universal applicability, where the dispenser means containing the chemical cartridge may be utilized with housings having either upper outflow conduits or lower outflow conduits.
SUMMARY OF THE INVENTION
The invention comprises a dispensing device which is incorporated within a chemical dispenser used to introduce a chemical solution into a flow of liquid, where the chemical solution is created by dissolving a solid chemical contained within a cartridge to create a saturated chemical solution. The flow of liquid draws the chemical solution into the liquid at a steady rate. The chemical dispenser housing and base may be of various configurations.
In one type, the chemical dispenser comprises a flow-through, fixed base member having an inlet opening connected to a water supply conduit, an outlet opening connected to a water outflow conduit, and an annular mounting flange adapted to receive a generally cylindrical, hollow, open top housing beneath the base member. A down flow opening in the fixed base diverts water from the inlet opening into the cylindrical housing, and a centrally located up flow opening in the fixed base receives water from the cylindrical housing and directs it through the outflow opening and into the outflow conduit. In a second type, the chemical dispenser comprises a flow-through, fixed base member having an inlet opening connected to a water supply conduit, an outlet opening connected to a water outflow conduit, and an annular mounting flange adapted to receive a generally cylindrical, hollow, open bottom housing above the base member. An up flow opening in the fixed base diverts water from
Lawrence Frank M.
Saitta Thomas C.
Simmons David A.
LandOfFree
Chemical dispenser does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Chemical dispenser, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chemical dispenser will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2514139