Checkout system convertible between assisted and...

Merchandising – Customer service – Store service

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C235S383000

Reexamination Certificate

active

06588549

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to checkout station configurations that are convertible and, more particularly, to an apparatus, method, and system allowing selectable conversion and scaleable configuration of multiple checkout stations, providing either or both of self-assisted checkout and assisted checkout capabilities.
BACKGROUND
In a retail store such as a drugstore, for example, customer volume at checkout stations varies depending on the time of day, day of week, special promotions, weather, and other reasons. In order to efficiently manage a retail store, a number of checkout stations that are active and have a store employee functioning as a checkout operator will conventionally vary depending on anticipated customer volume for different times.
In a conventional drugstore checkout configuration, multiple checkout stations are either configured in a known ‘supermarket’ layout having parallel lanes (a parallel checkout configuration), or they are configured to have individual checkout stations along, for example, a counter (a serial checkout configuration). In the single counter configuration, the counter serves to demarcate and provide a secure employee area. The secure employee area is thus defined behind the counter such that a customer area is defined at the front of the counter. The secure employee area serves for making cash “drops” into a register or a safe, for stocking and dispensing controlled goods such as alcohol and cigarettes, and for other purposes.
In any of the conventional checkout configurations for any type of store, it has become difficult to maximize throughput and to manage the variability of store traffic and employee availability. For example, if a store manager knows that her store is typically very busy during Friday evening hours, the manager may provide for having a large number of checkout employees at work during those peak period hours. In the event of one or more checkout employees being absent from work, the checkout employees who are present will be required to forego taking breaks, employees who are unfamiliar with checkout operations may be required to man a checkout station, or the amount of time a customer must wait in line becomes excessive.
In another example, a store manager may have hired additional checkout employees for a known peak-volume period only to encounter a weather condition such as cold temperatures that inhibits customers from shopping at that time. Other similar examples can easily be envisioned, where the conventional checkout configurations are inefficient because they are not adaptable to unseen events and conditions.
Certain stores such as drugstores may have additional logistical considerations such as having a limited amount of floor space. Generally, more floor space equates to the ability to sell more goods, provide for a more comfortable shopping environment, and/or the like. Implementation of the above-mentioned ‘counter’ or ‘serial’ type checkout configuration generally requires less square footage than for the ‘supermarket’ or ‘parallel’ type checkout configuration. The “footprint,” an outline and floor surface area occupied by a checkout station's equipment and by the checkout station's related surfaces such as for a merchandise placement area and/or a bagging area, should, therefore, be minimized. Thus, most drugstores, convenience stores, and the like with limited floor space or other considerations, other than ‘superstores’ use a counter or serial type checkout configuration.
To aid in the understanding of the present invention, a conventional counter or serial type checkout configuration is illustrated by way of example in
FIG. 1. A
conventional counter or serial type checkout system
1
includes a counter
10
and multiple checkout stations
2
disposed primarily on a top surface of the counter
10
. Each of the checkout stations
2
includes a checkout terminal/display
4
, a universal product code (UPC) barcode scanner
5
, a bagging area
6
, and a merchandise placement area
7
. The conventional counter type checkout system
1
also includes an exit lane
20
that a customer uses to walk to the store's exit after the customer's checkout activities have been completed.
It can be appreciated from the foregoing that a conventional counter or serial type checkout configuration is not scaleable or optimized/optimizable for efficient use of store and/or employee resources.
Recently, self-checkout stations have been developed that reduce a store's dependency on a projection of when additional checkout personnel will be needed. One example of these recently developed checkout stations includes a checkout station for parallel type checkout configurations that is convertible from a self-checkout or non-assisted mode to a cashier-checkout or assisted mode, particularly the NCR Self-Checkout C-Series station from NCR Corporation of Dayton, Ohio. The NCR Self-Checkout C-Series station has a scanner/scale console or cabinet that is entirely removable from the checkout station assemblage, through casters or the like. The entire scanner/scale console is rotatable and replaced into the checkout station assemblage such that the scanner/scale is changed in orientation from a customer-usable scanner/scale to a cashier-usable scanner/scale. The scanner/scale console further has a cashier display that is rotatable for proper customer or cashier orientation. However, as can be appreciated, these currently developed convertible checkout stations and conventional self-checkout stations are laborious to convert, require a large amount of floor space, and thus are impractical for smaller retail stores such as drugstores.
SUMMARY
The present invention is a system, method, and apparatus that provides selectable conversion and scaleable configuration of multiple checkout stations, allowing either or both of self-assisted checkout and assisted checkout. The multiple checkout stations are arranged in a modified serial or staggered angle or skew configuration relative to a linear walkway adjacent the checkout stations.
In one form, the present invention is a checkout station. The checkout station comprises a housing, a scanner, a first display, and a second display. The housing includes a counter. The scanner is movably mounted relative to the counter and has a scanning face operative to scan indicia, a first position wherein the scanning face has a first orientation corresponding to one of an assisted mode of operation and a self-assisted mode of operation, and a second position wherein the scanning face has a second orientation corresponding to the other of the assisted mode of operation and the self-assisted mode of operation, the scanner being selectively movable between the first and second positions. The first display is mounted on the counter and has a display face operative to display purchase transaction information to a clerk during the assisted mode of operation. The second display is mounted on the counter and has a display face operative to display purchase transaction information to a customer during the self-assisted mode of operation, a first position wherein the display face has a first orientation corresponding to one of the self-assisted mode of operation and the assisted mode of operation, and a second position wherein the display face has a second orientation corresponding to the other of the self-assisted mode of operation and the assisted mode of operation, the second display being selectively movable between the first and second positions.
In another form, the present invention is a system having a plurality of checkout stations disposed along a single, serial flow lane, wherein each checkout station is operative to perform purchase transactions and being convertible between a self-checkout configuration and an assisted checkout configuration.
In a further form, the present invention is a checkout system that includes a single serial flow lane and a plurality of checkout stations adjacent said single serial flow lane. Each checkout station inc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Checkout system convertible between assisted and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Checkout system convertible between assisted and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Checkout system convertible between assisted and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3059010

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.