Fluid handling – With casing – support – protector or static constructional... – Static constructional installations
Reexamination Certificate
2002-07-25
2004-04-13
Chambers, A. Michael (Department: 3753)
Fluid handling
With casing, support, protector or static constructional...
Static constructional installations
C137S847000, C137S850000
Reexamination Certificate
active
06719004
ABSTRACT:
TECHNICAL FIELD
The invention relates to drains for building floors, basements, exterior paved areas, and the like. The invention provides floor drain assemblies and check valves providing improved drainage performance and minimized backflow, particularly where drainage is an irregular occurrence.
BACKGROUND OF THE INVENTION
U-shaped or “gooseneck” traps have long been used in the plumbing industry to prevent backflow of harmful or annoying sewer or pipe gasses into buildings while permitting drainage of unwanted water from floors and other horizontal surfaces. Such traps operate by leaving a small quantity of fluid within the lower portion of a U-shaped trap section to act as a gas barrier. In many applications, however, particularly where access is difficult or where drainage is infrequent, it is disadvantageous to use such drains. Fluid may evaporate from the trap, permitting free flow of obnoxious gases through the drain; insects may breed in the fluid, or in some instances the fluids may harden so as to actually block or restrict flow through the drain. Such conventional drains are also relatively difficult and expensive to install. In addition to floor drain applications, these problems are also common to other areas of fluid control, wherever fluid drainage is an occasional problem.
One solution to these problems has been the use of trap primers, which operate to ensure that a minimum level of fluid is left in the drain to act as a trap for gasses, which accumulate within drains. Trap primers are usually difficult and expensive to install, and require maintenance and constant monitoring to ensure their functionality.
Outside the floor drain environment, the use of check valves has been suggested. As demonstrated herein, check valves can be efficient both in facilitating draining operations and in trapping drain-pipe gasses and preventing backflow. Heretofore, however, no one has suggested placing simple and efficient check valves in floor drains, either alone or in combination or in series with other types of valves.
DISCLOSURE OF THE INVENTION
The invention provides improved floor drains of unprecedented simplicity and reliability. In one aspect, the invention provides a check valve for a floor drain, the check valve being adapted for disposition within a floor drain or a drain basin and comprising a stop adapted for sealing engagement of a drain sealing surface located proximate an inlet to said floor drain, and further comprising means adapted to urge the stop into sealing engagement with the drain sealing surface. The means for urging the stop into sealing engagement with the drain sealing surface is adapted to permit disengagement of the stop from the sealing surface as a fluid such as water enters said drain, so as to permit drainage of the fluid through the drain is permitted, while urging the stop back into contact with the sealing surface so that backflow of gasses from within said drain is prevented after the fluid has drained. Improved drain and valve assemblies provide redundant gas-trap and backflow prevention protection through the simple, economical, and efficient application of check valves. Redundant layers of check valves are installed in series to permit one-direction fluid flow and vacuum relief in drains.
In one aspect, the invention provides a drain assembly for use in the drainage of drain surfaces such as building and basement floors, exterior paved areas, swimming pools, and the like. The most common application of this aspect of the invention is in the drainage of water from flooded areas, with the water flowing downward under the influence of gravity or some other driving force. Most often, this means that the fluid drains substantially vertically under gravitational influence. An assembly according to this aspect of the invention comprises a drain basin having an inlet and an outlet, with the outlet being adapted for the attachment of a drain conduit, and at least one check valve disposed within the drain basin. In an alternative embodiment, at least two check valves can be placed in series to form a set, preferably in a substantially vertical orientation, so that a chamber is formed between the valves. Two or more sets can be used in parallel, or in series if desired, or some combination thereof. The check valves are adapted, generally by a combination of their substantially vertical series orientation and by the use of valves having suitable design opening or actuating pressures, to permit drainage of fluids through the drain inlet without substantial restriction, and to prevent backflow of gasses from the drain conduit through the chamber to the inlet. Preferably, valves are selected with opening and/or actuating pressures suitable for allowing gasses, for example air, to flow through the drain inlet and the chamber to relieve any vacuum formed within the drain conduit. The check valves are supported in a removable framework or other structure so that the valves may be removed from the drain for cleaning, repair, replacement, or other maintenance.
In another aspect, the invention provides a valve assembly for use with drains for draining drain surfaces. A valve assembly according to this aspect of the invention comprises a preferably removable support structure adapted for disposition, preferably by insertion, within a drain basin installed in a floor or other drain surface. The support structure is adapted to support either a single check valve, or a plurality of check valves so as to form at least one chamber between serial individual valves or sets of valves, and to permit drainage through the drain in the manner described herein.
Check valves used with the invention are of various types. For many applications, and in particular where the drain is intended to facilitate drainage of water from floors and the like, flapper valves having flexible diaphragms adapted to engage a circumferential seat, and optionally comprising backing plates to support the diaphragm, and spring-loaded or spring-biased valves, are preferred. The selection of suitable check valves for any given drainage application will not trouble the designer of ordinary skill in the pertinent art.
Other preferred embodiments of this check valve aspect of the invention comprise stops incorporating “flapper” diaphragms made of elastic material, such as natural or synthetic rubbers, or other polymers. The diaphragm in such embodiments has sufficient flexibility to flex under pressure or other action of liquid entering the drain in order to allow the liquid to drain, and to return to a substantially unflexed condition in which sealing engagement of the drain sealing surface by the diaphragm is restored following drainage of said liquid. In such embodiments, as may be seen, the elasticity of the diaphragm acts as the means for urging the diaphragm into sealing contact with the drain sealing surface. A particular advantage of such embodiments of the invention is that the elastic diaphragm may be relatively easily, through well known liquid static and dynamic principles, and through well known principles of structural mechanics, be adapted to flex under the action of a preselected head pressure when liquid is present within the drain. That is, the geometry, and therefore the stiffness, of a diaphragm made of any given elastic material may be selected to ensure that the valve will open when a desired amount of water is present in the drain. As will be readily understood by those of ordinary skill in the art, once the suggestion has been made, this purpose may be accomplished either by selecting an appropriate uniform thickness for the diaphragm or by tailoring the thickness to provide a non-uniform thickness having any of a wide variety of desired flexure or bending characteristics. Another way of controlling flexure in the diaphragm, as will be well understood by those of ordinary skill in the art, is to provide the elastic diaphragm with a back plate which serves to stiffen or otherwise support at least a portion of the diaphragm. In such cases portions of the diaphragm supported
Huber Donald G.
Stakset Allen I.
Chambers A. Michael
Garrison & Associates PS
LandOfFree
Check valve floor drain does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Check valve floor drain, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Check valve floor drain will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3225501