Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices
Reexamination Certificate
1999-12-27
2001-10-09
Picard, Leo P. (Department: 2835)
Electricity: electrical systems and devices
Housing or mounting assemblies with diverse electrical...
For electronic systems and devices
C361S695000, C361S678000, C454S184000, C454S369000, C174S016100
Reexamination Certificate
active
06301108
ABSTRACT:
BACKGROUND OF THE INVENTION
A. Field of the Invention
This invention relates to the mechanical aspects of a unitary device containing electronic components, referred to herein generically as a “chassis”. Some examples are devices containing communications equipment and used by telephone companies, internet service providers, computer network operators, and other types of users. The features of the present invention contain any fire that may occur within the chassis and prevent flames from migrating out of the chassis into the enviromnent, while preserving airflow through the chassis to keep the chassis cool during periods of normal operation.
B. Description of Related Art
Integrated telecommunications devices, such as routers, switches, network access servers, remote access concentrators, TI span termination shelves, and other similar types of devices, often take the form of a large chassis or unit, sometimes weighing 50 to 100 lbs. or more. The chassis, sometimes referred to as a “shelf”, typically incorporates one or more printed circuit boards or, more commonly, modular cards, with such cards typically being capable of being manually inserted and removed from the chassis. These printed circuit boards and/or cards incorporate semiconductor-based electronic components such as microprocessors and integrated circuit chips that generate significant amounts of heat during operation of the device.
Integrated circuit chips, microprocessors, and other similar electronic components are designed to operate within a particular temperature window. Accordingly, the heat generated by such components must be removed from the chassis or else the components will overheat and fail. It is known in the art to provide air flow features by which relatively cooler ambient air is conducted into the chassis, and relatively warmer air generated inside the chassis is exhausted from the chassis though an aperture in the chassis housing, typically using one or more fans. Representative patents addressing cooling and air flow considerations within an electronics device include the following references: Manes, U.S. Pat. No. 4,502,099, Garner, U.S. Pat. No. 4,648,007 and the patents to Gourdine, U.S. Pat. Nos. 5,297,005 and 5,422,787. Gourdine's patents describe a cabinet or chassis in which one or more electronic components are individually isolated and subject to separate airflow in order to maximize the cooling of all the components in the cabinet.
By making the aperture allowing heat to escape from the chassis larger, the capacity for cooling of the chassis is improved. Hence, large apertures are desirable. They allow increasing numbers of heat-generating components to be incorporated within the chassis and yet the chassis can operate within an acceptable temperature window.
In accordance with prior art techniques, there are limits and constraints on aperture size for warm air egress. The reason is that these types of telecommunications devices are also at least theoretically capable of catching fire should a short circuit or other type of malfunction occur in the electronic components. Various industry standards bodies frequently require that any fire that may break out within the device be contained within the device. While the semiconductor components themselves are not particularly flammable, epoxy and other materials used in the circuit boards are quite flammable. Should the chassis catch fire and the flames migrate out of the chassis, the room or building in which the chassis is installed is therefore also at risk of catching fire, a situation presenting an obvious hazard to life and property.
Patents directed to fire containment features for residences, and other types of buildings include the following references: Petit, U.S. Pat. No. 3,818,816 and Schaus, U.S. Pat. No. 4,805,835. However, to the inventor's knowledge, the art has never applied these teachings to communications or similar devices. One possible reason is that the complex problem of cooling, air flow, and fire containment in a telecommunication device or similar type of structure is quite different from fire containment issues pertaining to a dwelling, office building, or the like.
A chassis which on the one hand has a generous aperture for cooling purposes and good air flow characteristics, but which also provides features for preventing flames from migrating out of the chassis via the aperture, has apparently eluded the art. This invention provides features which not only allows for optimum cooling and air flow during periods of normal operation of the chassis, but also provides a fire containment feature which blocks the aperture to prevent fire or flames from escaping from the chassis and thereby provide increased safety for the device. As such, the present invention is believed to be a substantial advance in the art.
While the invention is described below in the context of one type of telecommunications chassis, namely a device terminating T
1
spans in a telephone company central office, it will be readily apparent to persons skilled in the art that the invention is capable of wide application in other types of devices and the invention is certainly not limited to any particular type of communications device or chassis. For example, the invention could be incorporated into a personal computer or workstation. Thus, the scope of the invention is to be determined by reference to the appended claims. It is not intended to be limited to the example in the following detailed description. Hence the tern “chassis”, as used in the specification and claims, is intended to encompass any unitary electronics device, such as a telecommunication or networking device, contained within a housing, regardless of the function performed by the device. The term chassis would therefore embrace, for example, a network access server, switch, router, T
1
span termination shelf, workstation, personal computer, television set or any other similar type of device.
SUMMARY OF THE INVENTION
In a first aspect of the invention, an improvement to a chassis is provided. The chassis includes a housing containing a plurality of electronic components which generate heat during normal operation of the chassis. The improvement comprises providing an aperture in the housing to permit the flow of air therethrough and a moveable door for the aperture. The door is maintained in a normally open condition relative to the aperture by a temperature sensitive material during periods of normal operation of the chassis. The temperature sensitive material is transformable upon exposure to sufficient heat or flame within the chassis so as to cause the door to move to a closed condition relative to the aperture, thereby substantially preventing migration of any flame occurring within the chassis through the aperture.
In one possible embodiment, the temperature sensitive material, such as a liquid crystal polymer filament, holds the door open against the force of gravity (e.g., against the top of the chassis), but melts upon exposure to sufficient heat or flame to release the door and allow the door to drop or pivot into a closed position covering the aperture. In another possible embodiment, the temperature sensitive material undergoes a transformation to cause a switch to close, whereby a motor or other device closes the door. The use of a material that melts upon exposure to sufficient heat or flame is a preferred technique, since it will work regardless of the state of operation of any electronic components in the chassis, e.g., switches or motors, which may not be working in the event of a fire.
The manner in which the temperature sensitive material maintains the door in an open condition relative to the aperture during periods of normal operation is not particularly critical. For example, the temperature sensitive material may simply have one portion connected to the door and another portion connected to the housing, wherein the temperature sensitive material simply holds the door open against the force of gravity or the force of a spring. When the material unde
Datskovsky Michael
McDonnell & Boehnen Hulbert & Berghoff
Picard Leo P.
Westell, Inc.
LandOfFree
Chassis containing electronic components with fire... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Chassis containing electronic components with fire..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chassis containing electronic components with fire... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2617076