Dentistry – Apparatus – Having intra-oral dispensing means
Reexamination Certificate
2001-09-26
2004-03-30
Shaver, Kevin (Department: 3732)
Dentistry
Apparatus
Having intra-oral dispensing means
C433S224000
Reexamination Certificate
active
06712610
ABSTRACT:
BACKGROUND OF THE INVENTION
Endodontics is a field of dentistry concerned with the biology and pathology of the dental pulp and periapical tissues. Endodontic treatment employs a set of techniques, such as chemomechanical debridement, irrigation, drainage of hard and soft tissue, trephination, and antimicrobial therapy, with the goal of avoiding the extraction of a damaged, infected or diseased tooth.
Normal vital pulp is sterile, and the role of bacterial infection in the pathogenesis of pulpal and periapical disease is well established. Infected or necrotic pulpal tissue renders the pulp chamber and root canal a potential reservoir of bacteria, and disinfection of the tooth is one of the primary justifications for the chemomechanical aspects of root canal therapy. Recent data demonstrate a high incidence of root canal failure in necrotic teeth treated in a single visit, attributed to bacteria remaining in complex anatomical spaces such as accessory canals, fins, deltas and isthmuses (Sjorgen et al.,
Int. Endo. J.,
30:297-306 (1997)). Other studies have reported the ability of bacteria to migrate into dentinal tubules and survive therein (Nagaoka et al.,
J. Endodon.,
21:70-73 (1995)). It is speculated that the success rate of endodontic treatment could be 26% higher if the root canal is successfully disinfected prior to the final restoration (Sjorgen et al.,
Int. Endo. J.,
30:297-306 (1997)).
Root canal infections are characterized as polymicrobial infections which tend to be dominated by anaerobic bacteria. As a group, the common endodontic microbes associated with treatment failure include
F. nucleatum, P. intermedia, P. micros, S. intermedius, P. endodontlis, P. gingivalis, P. melaninogenica, E. lentum, V. parvula, S. sanguis, P. buccae, P. oralis
, and
P. acnes
. (Haapasalo,
FEMS Immunol. and Medical Micro.
6:213-217 (1993) and Sundqvist,
J. Endodon.,
7:257-262 (1992)).
Post-operative periapical pain and interappointment flare-ups are also routinely attributed to the presence of bacteria, and/or their by-products, within the root canal. Typically, an initial bacterial infection triggers a host-mediated inflammatory response, the consequences of which underlie the flare-up patient's clinical symptoms. It has been reported that bacteria surviving instrumentation and irrigation proliferate rapidly in empty root canals (Bystrom and Sundqvist,
Oral. Surg. Oral. Med. Oral Pathol.,
55:307-312 (1983)), and there is a positive correlation between the number of bacteria present in a root canal and the incidence of inter-appointment flare-ups. The presence of black-pigmented, gram negative anaerobes in the root canal usually accompanies patient complaints of pain, swelling, and tenderness to percussion (Haapasalo,
FEMS Immunol. and Medical Micro.,
6:213-217 (1993)). Thus, the successful elimination of bacteria from root canals may lower the incidence of flare-ups.
Antibiotics have historically been used as an adjunct to endodontic treatment either by systemic or local administration. Currently, antibiotic treatment for root canal infections and exacerbations is limited to systemic administration. Thus, in light of the established correlations between the primary and secondary effects of bacterial presence and the incidence of both interappointment flare-ups and treatment failure, there is a clear need for an efficacious method of delivering and sustaining substantial concentrations of intracanal medicaments, particularly antibiotics.
During the 1950's a polyantibiotic paste (PBSC) was devised for use as an intracanal medicament (Grossman, L. I.,
J. Amer. Dent. Assoc.,
43:265-278 (1951)). PBSC consisted of penicillin to target gram positive organisms, bacitracin for penicillin-resistant strains, streptomycin for gram negative organisms and caprylate sodium to target yeast, all suspended in a silicone vehicle. Although, clinical evaluation suggested that polyantibiotic paste conferred a therapeutic benefit (fewer treatments to achieve a negative culture) the composition was ineffective against anaerobic species (which are now appreciated as the dominant species responsible for treatment failure). In 1975 the Food and Drug Administration (FDA) banned PBSC for endodontic use primarily because of the risks of sensitization and allergic reactions attributed to the penicillin. This underscores the importance of improving historical endodontic methodologies, particularly local delivery methods, in light of contemporary knowledge and technological advances.
SUMMARY OF THE INVENTION
The invention relates to endodontic fibers comprising a biocompatible polymer vehicle which is permeable to medicaments, or combinations of medicaments, dispersed, e.g., homogeneously, therein. Such fibers can be used, for example, in a method for the local delivery and sustained release of medicaments to periodontal or intracanal treatment sites. Endodontic fibers of this invention include modified periodontal fibers and intracanal fibers.
One embodiment of the invention relates to modified periodontal fibers suitable for delivery of medicaments to intracanal treatment sites. These first generation endodontic fibers, referred to herein as “modified peridontal fibers”, represent an adaptation of an ethylene vinyl acetate delivery vehicle (see U.S. Pat. No. 4,764,377 and U.S. Pat. No. 4,892,736) previously developed to administer therapeutic agents during the course of periodontal treatment (Gilad, “Development of a Clindamycin Impregnated EVA fiber as an Intracanal Medicament in Endodontic Therapy,” Master of Medical Sciences Thesis, Harvard University School of Dental Medicine, defended Apr. 2, 1998, and Gilad, et al., “Development of a Clindamycin-Impregnated Fiber as an Intracanal Medication in Endodontic Therapy,”
Journal of Endodontics,
25(11):722-727 (1999), the entire teachings of which are incorporated herein by reference). Specifically, the periodontal fibers have been modified to confer properties which allow the use of the fiber within an intracanal treatment site, e.g., to confer specific physical characteristics such as form and consistency. In one embodiment, the modification comprises the treatment of the periodontal fiber with an agent such as a biocompatible refrigerant spray (e.g., Endo Ice).
In an alternative embodiment, the invention also relates to a second generation endodontic fiber, referred to herein as an “intracanal fiber,” which can be specifically designed for use in intracanal delivery methods, thereby obviating the need to modify a peridontal fiber for use in intracanal sites. Such design can include an alteration in the composition and/or ratio of components of the fiber. For example, as described herein, it has been discovered that an ethylene vinyl acetate (EVA) fiber containing less than about 20% vinyl acetate is suitable for use as an intracanal fiber. In a preferred embodiment, the EVA fiber contains less than about 20%, preferably less than about 15% and more preferably less than about 10% vinyl acetate. In one embodiment, the EVA fiber contains about 9.3% vinyl acetate. In a preferred embodiment, the intracanal fiber has a diameter of less than about 0.5 mm. In one embodiment the intracanal fiber has a diameter of about 0.3 mm.
The invention is demonstrated herein using clindamycin/ethylene vinyl acetate (EVA) fibers; however, this example is not intended to limit the scope of the invention in any way. For example, the contemplated intracanal fiber can be formulated to have a polymeric composition, surface tackiness, stiffness, glass transition temperature, and/or diameter selected to confer characteristics compatible with placement within the root canal. Although the second generation intracanal fiber is particularly adapted for intracanal use, other (i.e., non-intracanal) uses of this fiber are also envisioned. For example, the intracanal fiber can also be used for periodontal treatment.
In addition, the choice of medicament and the dose at which it is incorporated into the disclosed endodontic fibers (e.g., modified peridontal fibers or intr
Abdennour Mario
Gilad Jack
Goodson Max
Scrime Michele
Stashenko Philip
Beattle Ingrid A.
Bumgamer Melba
Forsyth Dental Infirmary for Children
Mintz Levin Cohn Ferris Glovsky and Popeo P.C.
Shaver Kevin
LandOfFree
Characterization of an antibiotic impregnated delivery... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Characterization of an antibiotic impregnated delivery..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Characterization of an antibiotic impregnated delivery... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3185762