Channel-less separation of bioparticles on a bioelectronic...

Chemistry: electrical and wave energy – Processes and products – Electrophoresis or electro-osmosis processes and electrolyte...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C204S450000, C204S600000, C435S173700, C435S173900, C435S285200, C435S287200, C435S306100

Reexamination Certificate

active

06280590

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to devices and methods for performing active, multi-step molecular and biological sample preparation and diagnostic analyses. It relates generally to devices and methods for electronic cell separation, cell lysis, and/or enzymatic reaction; and more specifically, to devices and methods for achieving channel-less separation of cell particles by dielectrophoresis, DC high-voltage-pulsed electronic lysis of separated cells, and/or enzymatic reaction, all of which can be conducted on a single bioelectronic chip (e.g. in an integrated assay system). These manipulations are useful in a variety of applications, including, for example, food and/or water quality monitoring, infectious disease diagnostics, diagnostics of cancers, bone marrow processing (e.g. stem cell separation and analysis) and genetics-based identification of individuals for forensics purposes. In addition, these processes and devices can be used in gene expression studies particularly in which a small number of cells of a specific type are to be separated from a large number of other cells for the purpose of studying the RNA of the specific subpopulation.
BACKGROUND OF THE INVENTION
The basis for many molecular-biological and immuno assays, diagnostic assays and tests, among other things, include the steps of obtaining a cellular sample (e.g., blood, tissue, etc.), separating out the cellular material of interest, disrupting or lysing the cells of interest to release the crude DNA and RNA (for simplicity, a reference to DNA in the following text also refers to RNA where appropriate) all protein, purifying the crude lysate (i.e. removing cellular debris), and performing some enzymatic reaction to analyze the lysate as desired.
Dielectrophoresis has become a popular technique for separating microparticles which are either charged or uncharged in solution. Techniques reported prior to this invention are almost always performed in a glass slide based device having exposed (i.e. naked) interdigitated electrodes plated on the surface of the slide and having a flow chamber with a volume of several hundred microliters. Cells are separated in such devices based on their dielectric properties by choosing separation buffer(s) with appropriate conductivity and an AC signal with a suitable amplitude and frequency. These prior devices have several problems, including the following. A first problem is that both separated and unseparated cells bind nonspecifically to the exposed glass surface of the slide and to the exposed electrode surfaces. A second problem is that the volume of the flow chamber (several hundred microliters) is so large that thermal convection disturbs and pushes off cells initially retained by the electrodes. A third problem is that washing off any undesired cells is not easily accomplished without disturbing the cells that are desirably retained on the electrodes, as the desired cells and electrodes stand in the way of fluidic flow and, hence, block the wash flow containing any undesired cells.
Disrupting or lysing cells releases the crude DNA and RNA material along with other cellular constituents. Electronic cell lysing techniques reported prior to this invention are conventionally performed by applying a series of high voltage DC pulses in a macrodevice, as opposed to a microchip-based device. These conventional electronic lysis techniques have several problems, including the following. A first problem is that the electronic lysis conditions specified by commercial macro-device do not release DNA molecules of high molecular weight (larger than 20 Kb) because the high molecular weight DNA molecules do not fit through the pores created in the cell membrane by the prior lysing methods. A second problem is that some nucleic acids originally released in the lysis chamber are lost due to their non-specific binding to the surface of the lysis chamber. A third problem is that the conventional electronic lysis macrodevice works as a stand alone unit such that both dielectrophoretic cell separation and electronic lysis cannot be performed on the same module.
The crude lysate is then purified (i.e., undesired cellular debris is washed off or separated), and then the purified lysate is subjected to enzymatic reaction(s) to prepare the lysate for hybridization, detection, and analysis. Such reactions may include, for example, denaturing, cleaving, or amplifying the lysate. Only after these sample preparation and DNA processing steps, the actual hybridization reaction is performed, and, finally, detection and data reduction convert the hybridization event into an analytical result. These conventional preparation and processing techniques have several problems, including the following. A first problem is that the steps of sample preparation and processing are typically performed separately and apart from the other main steps of hybridization, detection and analysis. In addition, most of these techniques involve carrying out numerous operations (e.g., pipetting, centrifugations, electrophoresis) on a large number of samples. They are often complex and time consuming, and generally require a high degree of skill. Many a technique is limited in its application by a lack of sensitivity, specificity, or reproducibility. For example, these problems have limited many diagnostic applications of nucleic acid hybridization analysis.
Attempts have been made to use dielectrophoresis to separate and identify cells. For example, U.S. Pat. No. 4,326,934 to Herbert discloses a method and apparatus for cell classification by continuous dielectrophoresis. Cells were separated by making use of both the positive and negative dielectrophoretic movement of cell particles. Separated cells were allowed to be characterized and/or classified by viewing the characteristic deflection distance of cells moving through the two electrodes.
Also, U.S. Pat. No. 5,344,535 to Walter et al. discloses a method and apparatus for the characterization of micro-organisms and other particles by dielectrophoresis. Cells were characterized by matching their signature dielectrophoretic collection rates.
And U.S. Pat. No. 5,569,367 to Walter et al. discloses a method and apparatus for separating a mixture using a pair of interdigitated electrodes. The apparatus used two energized interdigitated electrodes that obstruct straight through flow of cells and further separate different types of cells into fractions by applying a non-uniform alternating field. The electrode structure is comprised of interleaved grid-like structures aligned to obstruct flow through the structure.
In addition, attempts have been made to combine certain processing steps or substeps together. For example, various microrobotic systems have been proposed for preparing arrays of DNA probes on a support material. For example, Beattie et al., in The 1992 San Diego Conference: Genetic Recognition, November, 1992, used a microrobotic system to deposit micro-droplets containing specific DNA sequences into individual microfabricated sample wells on a glass substrate. Various attempts have been made to describe integrated systems formed on a single chip or substrate, wherein multiple steps of an overall sample preparation and diagnostic system would be included. For example, A. Manz et al., in “Miniaturized Total Chemical Analysis System: A Novel Concept For Chemical Sensing”,
Sensors And Actuators
, B1(1990), pp. 244-248, describe a ‘total chemical analysis system’ (TAS) which comprises a modular construction of a miniaturized TAS. Sampling, sample transport, any necessary chemical reactions, chromatographic separations as well as detection were to be automatically carried out. Yet another proposed integrated system is Stapleton, U.S. Pat. No. 5,451,500, which describes a system for automated detection of target nucleic acid sequences in which multiple biological samples are individually incorporated into matrices containing carriers in a two-dimensional format. Different types of carriers are described for different kinds of diagnostic tests or test panels

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Channel-less separation of bioparticles on a bioelectronic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Channel-less separation of bioparticles on a bioelectronic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Channel-less separation of bioparticles on a bioelectronic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2517942

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.