Surgery – Miscellaneous – Devices placed entirely within body and means used therewith
Reexamination Certificate
1999-03-30
2001-02-27
Gilbert, Samuel G. (Department: 3736)
Surgery
Miscellaneous
Devices placed entirely within body and means used therewith
Reexamination Certificate
active
06192890
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to tattoos that may be changed at will, and more specifically to an ink, method and devices to provide tattoos that may be readily changed to show any image, text or combination thereof.
BACKGROUND OF THE INVENTION
Tattoos are an ancient form of personal expression. They provide an image or text worn on the skin, impervious to washing, surface abrasion or time. Indeed, the tattoos are best known for their permanence. As a remedy to the inalterable permanence of the tattoo art, several technologies have recently become available that allow tattoos to be removed, but these processes are painful, expensive, and relatively slow, often requiring multiple treatments to achieve only moderate success. For this reason many people who are interested in personal expression and body art are dissuaded from getting a tattoo because of the inalterable nature of tattoos. Also, tattoos are currently provided by specialized tattoo parlors, adding to their cost and inaccessibility. There are temporary tattoos, but they are short-lived and relatively limited in the variety of possible images as they are manufactured in a finite set of popular likenesses.
It is therefore desirable to have the benefit of body art (tattoo) that would last indefinitely, yet could also be changed as desired. Ideally one could modify, completely change, or “remove” a tattoo quickly, painlessly and at low cost. Furthermore, it is desirable to allow the wearer to change the design to be a one-of-a-kind, self-made image, one that even reflects the subtleties of their own hand, as opposed to a second parties interpretation of their visual concept, or simply a manufactured popular image. It is also desirable to provide an “eraser” that allows a tattoo image to be easily removed. It is also desirable to have a low-cost device that would enable a tattoo-wearer to change their tattoo to represent any electronically stored image, such as available through the worldwide web. It is yet a further object to provide the above in such a way as to eliminate the need for especially skilled persons to create/change a tattoo image. It is yet still further object to provide means for a tattoo owner to apply the original tattoo themselves. Yet still further it is desirable to provide greyscale and color images in the above contexts. It is also the object of this patent to provide devices and tattoo inks that will facilitate the above. It is also desirable to have a changeable display for the human body which is optimally thin, flexible and durable. It is also desirable to provide a dynamic image on the skin which can also be used as a computer, video or informational display. In the case of animals, it is desirable to be able to permanently and painlessly mark and remark individuals to aid in their care and treatment. It is also desirable to be able to vary the markings on livestock and captured wild animals to keep track of their dates and places of capture, inoculations, medical history and the like.
PRIOR ART
U.S. Pat. No. 5,638,832 to Singer provides an LCD display that is surgically implanted under the skin. This device requires a local power source, which is invasive to the body and increases the risk of injury and/or the need for repair. It also requires the implantation of electronic circuitry, which us further undesirable for the reasons stated. The implantation of this device requires extensive surgery. This device (its electronics, battery and/or display) are also relatively rigid and relatively non-conformal, providing some awareness to the user of the presence of the device and increasing the risk of injury to internal tissues. Finally, it is inherent in the nature of scanned display technologies, such as LCD, to have potential failure points along entire lies and regions of the display. The inherent tradeoff between flexibility and durability renders these devices as being either susceptible to catastrophic damage by a single blow, or bulky and/or rigid.
The prior art describes many approaches for making microspheres of two colors, such as U.S. Pat. No. 5,344,594 to Sheridon in which two epoxy jets flow into one another to produce a solid sphere. There is also art U.S. Pat. No. 5,604,027 to Sheridon, that provides an encapsulated bi-colored microsphere that can be rotated with electric fields. U.S. Pat. No. 5,760,761 to Sheridon provides transparent and colored microspheres using varying zeta potentials. None of these patents provide or suggest: biocompatible microspheres in a resorbable biocompatible fluid; a removable print plane; using the body's core capacitance as an electrical reference; or using the dermis as a matrix, or changeable tattoos in general.
SUMMARY OF THE INVENTION
In this invention the above limitations are overcome and objects and advantages achieved as follows. In a broad sense, the instant invention is still a true tattoo: ink introduced into the inner dermis by insertion, preferably by a needle. However the instant invention does not use traditional tattoo inks nor the traditional tattoo needle, and is manipulated externally by novel tattoo image manipulation devices. The ink includes spherical microcapsules (30-150 &mgr; diameter) made of a biocompatible transparent material which contains image material of at least two colors. In the preferred embodiment three sets of rotating ball microspheres are used, each set being independently controllable. Each set containing two colors and a transparent axis. By injecting an area of the skin with this ink in a continuous surface, the present invention provides the basis for a multi-colored changeable and removable tattoo. By applying an electric field the microspheres may be oriented to provide any desired image.
There are two primary embodiments which may be used for the microcapsules. The first has three elements: a transparent shell, a particulate and a fluid. The particulate is nonconductive, biocompatible, and of density compatible with the fluid. Suitable materials include polyethylene pigmented with magnetite, or polyurethane dyed organically with carboxy functional groups throughout, and can be readily purchased from companies like Dyno Particles AS as microspheres as small as 0.5 microns. The fluid must be nonconductive, opaque, biocompatible, and of density compatible with the particulate, such as poly(dimethylsixone). Powdered titanium dioxide alone or pigmented into plastic particles is used to color silicone oil. The shell must be nonconductive and biocompatible, with sufficient structural integrity to withstand the implantation process. In one embodiment this structural integrity is achieved by a secondary manufacturing operation that adds a rigid-walled transparent outer shell over a transparent primary shell. In another embodiment the first shell is made of a semicrystalline or amorphous state of collagen called gelatin with a high number of cross links, thereby offering a clear, non-absorbable highly biocompatible material with a structural integrity near that of glass. The outer spheres could also be made of many different type of polymers which include: polystyrene, polypropylene, polyamides, polyolefins, or acrylics. Particularly suitable polymers include polycarbonate and polysulfone because of their low water absorption, high stability, low water permeability and low bioactivity. The process of making microspheres with encapsulants is know in the art. In one embodiment microencapsulation by interfacial polymerization is used to encapsulate droplets of oil containing the inner spheres with an outer shell of a polymer. This polymer could be: polyurethane, polyethylene, polypropylene or another polymer with suitable characteristics for use in an interfacial solution.
The second structure is a biocompatible colored sphere floating in a transparent biocompatible fluid that is itself contained within a transparent biocompatible shell. The sphere is rotated (using electric or magnetic fields) to control the color presented at the skin surface. A variety of colors may be provided usin
Cherry John-Paul F.
Levy David H
LandOfFree
Changeable tattoos does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Changeable tattoos, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Changeable tattoos will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2595375