Chamfered head for enhanced loading onto media

Dynamic magnetic information storage or retrieval – Fluid bearing head support – Disk record

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06362935

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to data storage systems. More particularly, the invention relates to chamfered heads used to facilitate head loading/unloading for a disk drive.
A variety of devices that read and write information on a rotating disk medium have been developed and used as computer data storage devices. For example, optical disk drives employ a rotatable optical recording medium for the storage of data. Magnetic medium devices have been and still are the most common computer storage devices. Widely used disk drives are generally available in two broad categories—removable and fixed. In the case of magnetic media cartridges, the medium is generally housed and in the case of optical media, the medium is generally not. By contrast, fixed disk drives read and write information magnetically or optically on a fixed disk that is permanently fixed in the data storage device.
Fixed disk drives are generally used as the principal storage devices of computers, since they typically have data transmission speeds and storage capacities that are several orders of magnitude greater than removable disk drives. Fixed disk drives, however, have the drawback that they cannot be easily transferred to another computer. Hence, computers of today are generally equipped with both a removable cartridge type and fixed type disk drive.
Disk drives for use with both removable disk cartridges and fixed media typically employ either a linear actuator mechanism or a radial arm actuator mechanism for positioning the read/write head(s) of the disk drive on the recording surface(s) of the storage medium, or disk. Since certain media is removable, as in the case with disk cartridges, disk drives are designed such that the linear or radial arm actuator moves off, and away from, the storage medium to a retracted position in order to prevent damage to the head(s) and/or media when such media is inserted and removed from the disk drive. Similarly, actuators found in fixed medium disk drives perform a similar retraction and parking function. This function is generally performed during drive power down to prevent damage to the head(s) and/or media.
Moreover, many removable cartridge disk drives and fixed medium drives employ a plurality of opposing read/write heads for recording and reproducing information on both sides of a storage medium. Typically, the opposing heads are disposed on flexible suspension arms at the distal end of an actuator that allow the heads to fly closely over the respective surfaces of the rotating disk. The opposing heads should be spaced apart as they approach the edge of the disk during a head loading operation in order to avoid collision with the edge of the disk. Similarly, when the heads are unloaded from the disk, they should again be spaced apart to avoid collision with the medium and each other.
Prior art removable media disk drive mechanisms primarily employed load ramps to safely load and unload what are generally squared-off heads from the media during cartridge insertion and ejection. The load ramps, generally found proximate to the edge of the mounted media, separate the read/write heads during the loading/unloading process. For example, during drive power down or removable cartridge ejection, the head/arm assembly moves towards the load ramp and away from the edge of the media. Once proximate to the load ramp, the load arms begin to mount the wedge like load ramp, which physically separates the load arms. Similarly, when the disk cartridge is fully inserted (i.e. the media is fully mounted) or after drive power up, the load arm assemblies, being physically separated by the load ramp, are driven by the actuator off of the load ramp and back towards the media. Thereafter, the heads are permitted to load onto the medium surface. In this way, the load ramp protects the heads and the medium from damage that could result if the heads collided with media during the head loading process.
However, the use of load ramps does not completely preclude damage to the head assembly resulting from an inadvertent collision with the recording media, particularly the edge of the recording media. Prior art removable media disk drive mechanisms typically employ head designs having an essentially squared-off surfaces. The squared-off surfaces readily expose the head assembly to damage in the event of an inadvertent medium edge collision, which is ragged and abrasive. By way of example, during a loading cycle the squared-off head surface may collide with the medium edge stubbing against the high speed, abrasive, ragged surface whereby the medium could for example damage the delicate head suspension, transfer debris to the head, or damage transducer leads. Additionally, physical damage to the medium may result from the described collision, rendering the data on the medium unrecoverable.
Thus, a head design that overcomes the drawbacks of the prior art is desirable. The current invention is directed to providing such a head design.
SUMMARY OF THE INVENTION
The present invention is directed to a data storage device that accepts or contains data storage media. According to one aspect of the present invention, the disk drive comprises an actuator arm assembly having at least one actuator arm, the actuator arm capable of traveling back and forth across the edge of the data storage media. The disk drive further comprises a head assembly mechanically coupled to the distal end of the actuator arm, such that the head assembly travels across the surface of the data storage media and at least one read/write head having a chamfered surface, mechanically coupled to the head assembly, such that said chamfered surface is exposed to the edge of the data storage media during said head assembly travel.
In accordance with an aspect of the present invention, the chamfered read/write head of the head assembly, comprises a base having a substantially planar surface, a top surface parallel to the base and a front surface and back surface attached to the base such that said front surface and back surface are parallel to each other and perpendicular to the base. Additionally, the rear surface comprises an enclave housing a read/write element. Accordingly, the chamfered read/write head also comprises a first and second side surfaces. The first side surface is perpendicularly attached to the base and parallel to the second side surface wherein the first and second side surfaces have a portion with a substantially planar surface and a chamfered portion extending from the planar portion to the top surface.
In accordance with a further aspect of the present invention, the chamfered read/write head additionally comprises chamfered front and back surfaces.
In accordance with a further aspect of the present invention, the chamfered read/write head element comprises at least one of the following group: a magnetic core or laser diode.
In accordance with further aspect of the present invention, the actuator arm assembly travels across the edge of the data storage media, back to and forth from, a load ramp.


REFERENCES:
patent: 4673996 (1987-06-01), White
patent: 4792874 (1988-12-01), MacDonald, II et al.
patent: 4811143 (1989-03-01), Ohashi et al.
patent: 5019930 (1991-05-01), Takeya
patent: 5062017 (1991-10-01), Strom et al.
patent: 5926346 (1999-07-01), Briggs
patent: 6040959 (2000-03-01), Kobayashi et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Chamfered head for enhanced loading onto media does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Chamfered head for enhanced loading onto media, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chamfered head for enhanced loading onto media will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2835812

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.