Surgery – Instruments – Means for inserting or removing conduit within body
Reexamination Certificate
2001-01-03
2002-02-12
Truong, Kevin (Department: 3731)
Surgery
Instruments
Means for inserting or removing conduit within body
C606S001000
Reexamination Certificate
active
06346110
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention generally relates to implantable devices, such as an expandable intraluminal prosthesis commonly known as stents. More particularly, this invention relates to a structures and techniques for applying therapeutic substances to an implantable device in association with the implantation procedure.
2. Description of the Related Art
Percutaneous transluminal coronary angioplasty (PTCA) is a procedure for treating heart disease. A catheter assembly having a balloon portion is introduced into the cardiovascular system of a patient via the brachial or femoral artery. The catheter assembly is advanced through the coronary vasculature until the balloon portion is positioned across the occlusive lesion. Once in position across the lesion, the balloon is inflated to a predetermined size to radially compress the atherosclerotic plaque of the lesion against the inner wall of the artery to dilate the lumen. The balloon is then deflated to a smaller profile to allow the catheter to be withdrawn from the patient's vasculature.
A problem associated with the above procedure includes formation of intimal flaps or torn arterial linings which can collapse and occlude the conduit after the balloon is deflated. Moreover, thrombosis and restenosis of the artery may develop over several months after the procedure, which may require another angioplasty procedure or a surgical by-pass operation. To reduce the partial or total occlusion of the artery by the collapse of arterial lining and to reduce the chance of the development of thrombosis and restenosis, an expandable intraluminal prosthesis, an example of which includes a stent, is implanted in the lumen to maintain the vascular patency. A well known procedure for delivering the stent to the diseased site includes crimping a compressed stent about the balloon of the catheter such that when the balloon is inflated, the stent dilates and is disposed within the vasculature.
FIG. 1
illustrates an example of the end result, the balloon having been deflated and withdrawn.
FIG. 1
shows a stent
10
, generally tubular in shape, in its expanded position, functioning to hold open and, if desired, to expand a segment of an anatomical lumen
12
. As best shown by
FIG. 1
, stent
10
prevents torn or injured arterial lining
14
from occluding lumen
12
.
In treating the damaged vasculature tissue and to further fight against thrombosis and restenosis, there is a need for administrating therapeutic substances to the treatment site. For example, anticoagulants, antiplatelets and cytostatic agents are commonly used to prevent thrombosis of the coronary lumen, to inhibit development of restenosis, and to reduce post-angioplasty proliferation of the vascular tissue, respectively. To provide an efficacious concentration to the treated site, systemic administration of such medication often produces adverse or toxic side effects for the patient. Local medication delivery is a preferred method of treatment in that smaller total levels of medication are administered in comparison to systemic dosages, but are concentrated at a specific site. Local delivery thus produces fewer side effects and achieves more effective results. One commonly applied technique for the local delivery of the drugs is through the use of medicated stents. Stents that are capable of storing medication and releasing it at the implanted site are well known in the art. A metallic stent coated with a polymeric material which is impregnated with a drug or a combination of drugs is one example. Once the stent is implanted within the lumen, the drug(s) are released from the polymer. U.S. Pat. No. 5,605,696 to Eury et al., U.S. Pat. No. 5,464,650 to Berg et al., and U.S. Pat. No. 5,700,286 to Tartaglia et al. are examples illustrating the use of a polymeric coating for the local delivery of the drug(s).
Sterilization of medicated stents in preparation for stent therapy significantly limits the choice of drugs with which the stent can be medicated. More specifically, stents are sterilized by ethylene oxide (Eto) gas or electron beam radiation. Some therapeutic substances do not tolerate either the Eto or electron beam radiation procedure. Although some therapeutic substances tolerate Eto, Eto is the less preferred method of sterilization for coronary procedures since the procedure leaves an ethylene residue on the stent after sterilization, which can provoke an inflammatory response.
The available choice of therapeutic substances for medicating stents therefore includes substances that are not adversely affected by electron beam radiation. The selections are limited. Accordingly, it is desirable to medicate the stent subsequent to the sterilization procedure.
Medicated stents also inhibit a treating physician's ability to make an ad hoc selection of most suitable therapeutic substance or combination of therapeutic substances, and dosage for a particular patient. A physician cannot custom treat a stent according to a patient's needs, but rather is limited to selections that are already provided by a biomedical supplier. Accordingly, it is desirable to allow a physician to medicate the stent in accordance with the particular needs of a patient.
Stents are medicated by a biomedical supplier well in advance of the stent therapy procedure and supplied to users in sterile packages. The therapeutic substance concentration that is secured by the stent diminishes during storage in sterile packages due to inevitable diffusion of the substance from the stent. The time lapse between treating a stent with a therapeutic substance and implanting the stent may decrease the therapeutic substance's efficacy or require the package to be discarded if extending beyond the package expiration date. Accordingly, it is desirable to medicate a stent immediately prior to the stent therapy.
SUMMARY OF THE INVENTION
In accordance with various aspects of the present invention, a chamber is configured for usage with a catheter to apply one or more therapeutic substances to an implantable device such as a stent after sterilization but before implantation therapy. The chamber is configured to be mounted on a catheter assembly having a balloon portion and a stent crimped or mounted on the balloon portion. The chamber comprises a hollow body defining a chamber cavity, which encapsulates the stent. The chamber includes an inlet duct and an outlet duct which allow a user to supply therapeutic substance(s) into the chamber cavity and to discharge the therapeutic substance(s) out of the chamber cavity.
In one embodiment, the hollow body includes a first end and a second end opposing the first end, the first end having an aperture and a sealing member disposed on a periphery of the aperture.
In another embodiment, the second end additionally has an aperture and a sealing member on a periphery of the aperture.
In another embodiment, the hollow body of the chamber includes an upper chamber body and a lower chamber body. The upper and lower chamber bodies can be releasably secured together to form the chamber cavity.
Another aspect of the present invention is a method of medicating the stent by supplying a therapeutic substance into the chamber cavity wherein the substance is exposed to or soaks the stent. The therapeutic substance is trapped in the chamber cavity and discharged after a predetermined period of time. Alternatively, the therapeutic substance is immediately discharged as it is supplied into the chamber cavity, creating a continuous flow through the chamber cavity. The continuous flow is maintained for a predetermined amount of time. The stent used in conjunction with the chamber of the present invention should be capable of storing or securing the therapeutic substance(s) and releasing the substance(s) at the site of treatment.
REFERENCES:
patent: 4597765 (1986-07-01), Klatt
patent: 5374257 (1994-12-01), Drainville et al.
patent: 5630830 (1997-05-01), Verbeek
patent: 5697967 (1997-12-01), Dinh et al.
patent: 5785715 (1998-07-01), Schatz
paten
Advanced Cardiovascular Systems Inc.
Cameron Kerrigan Squire Sanders & Dempsey L.L.P.
Truong Kevin
LandOfFree
Chamber for applying therapeutic substances to an... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Chamber for applying therapeutic substances to an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chamber for applying therapeutic substances to an... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2977872