Chain guide or tensioner arm with sheet metal bracket and...

Endless belt power transmission systems or components – Means for adjusting belt tension or for shifting belt,... – Tension adjuster has surface in sliding contact with belt

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C474S140000

Reexamination Certificate

active

06302816

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to a guide rail or tensioner arm for guiding or tensioning a drive chain and more particularly to a sheet metal bracket with tabs formed on one edge which are bent in alternate directions for engagement with a plastic shoe or wear face. The guide rails or tensioner arms of the preferred embodiment of the present invention are designed for use as chain guides or tensioner arms in power transmission systems and engine timing systems using chain to drivingly connect the elements of the system.
Conventional engine timing systems include a crankshaft and a corresponding sprocket system which operates an engine with either a single or dual overhead camshafts. The operation of the system is based upon a chain which extends from the crankshaft to the camshaft (or camshafts) and returns to the crankshaft in an endless loop. Rotation of the crankshaft and the chain causes the camshaft to rotate.
Examples of engine timing systems are shown in U.S. Pat. No. 5,427,580, which is incorporated herein by reference. As the chain extends in an endless loop between the driving and the driven sprockets, such as those located on a crankshaft (driving) and camshaft (driven), the chain forms a “tight” side and a “slack” side. The tight side is formed by the tension in the span of chain between the links entering the driving sprocket and the links leaving the driven sprocket. A slack side is formed on the other span of chain between the links leaving the driving sprocket and entering the driven sprocket.
The performance and action of the chain can differ dramatically between the tight and slack sides. A chain tensioner is conventionally used on the slack side of the chain. The tensioner acts to take up or eliminate the slack in the chain. As the engine accelerates or decelerates, the tensioner arm may move closer to the chain to maintain the tension, i.e., reduce the slack in the chain. The tensioner arm typically includes a convex surface to match the path of the chain.
In contrast, a chain guide is conventionally used on the tight side of the chain. Such a guide does not include a tensioner piece, as the chain portion remains tight between the two sprockets. Typically, the guide is fixed to a mounting surface, such as a side of the engine block. The guide serves to maintain the desired path of the chain between the sprockets.
Conventional guide rails of the prior art may be formed as a single piece but more typically include two components, a bracket or carrier and a plastic shoe or wear face, that are produced independently of one another and interconnected by some form of locking device. The bracket may be made of metal or plastic and the wear face or shoe is typically made of plastic.
U.S. Pat. No. 4,832,664 discloses a guide rail that includes a carrier formed of a first plastic material and a slideway lining body made of a second different plastic material. Each of these two components is formed in a mold. The carrier and slideway lining body are interconnected to one another by dovetail connections, and secured by bent end sections. In the chain guide shown in U.S. Pat. No. 4,832,664, the carrier and sliding guideway body are formed on complementary dovetail cross-sections, and interlocked by the bent end section, or a similar meshing arrangement, that prevent relative movement between the two portions.
U.S. Pat. No. 5,813,935 discloses a guide rail where the wear face is produced by an extrusion molding process. The extrusion molding process is used in place of injection molding to permit the use of dovetail connections and provide interlocking components. The carrier portion is substantially an I-shape in cross-section with an extending dovetail section. The dovetail section on the carrier fits a complementary dovetail cross-section formed in the wear face. The carrier portion may be manufactured of die cast aluminum or magnesium; injection molded nylon; steel stamping; steel casting; or, steel or aluminum weldment.
Prior art brackets for chain guides, when made of metal, have often been formed with the bracket mounted to the engine at a location away from the chain centerline.
FIG. 1
shows such a chain guide. The bracket is L-shaped in cross-section One side of the bracket
12
is mounted to an engine block
14
and the other side of the bracket
12
includes an attached shoe
16
with a channel shaped wear face
18
. The chain
20
passes along the channel shaped wear face
18
. The load applied to the bracket
12
by the chain
20
acts through distance “X” applying a stress to the bracket. To prevent the bracket
12
from bending or failing due to the stress, a bracket of thick material is used or an expensive stronger material is used.
The guide or tensioner arm of the present invention includes a carrier or bracket made from a formed sheet metal stamping. On a longitudinal edge of the bracket a series of extending tabs are formed. The tabs are bent perpendicular to the main body of the bracket in an alternating fashion. This forms a bracket which has a T-shape providing a base for mounting a plastic shoe with a wear face for guiding a chain.
SUMMARY OF THE INVENTION
The present invention is primarily concerned with a bracket or carrier for a tensioner shoe. The carrier and shoe is used as a chain guide or pivoting tensioner arm and may be applied to a power transmission system or engine timing system using a chain to drivingly interconnect driving and driven members.
In accordance with one embodiment of this invention, a chain guide is formed of two main interlocking parts. A first part includes a bracket. The bracket is formed of an initially flat, elongated stamped metal plate. The bracket has a pair of spaced holes.
Along one longitudinal edge of the bracket are formed a row of extending tabs. The tabs are defined by a series of slots formed in the edge of the bracket. The slots may originate from a row of holes formed in the bracket and extend to the longitudinal edge of the bracket. After the plate is stamped, the tabs are bent to a position perpendicular to the plane of the main body of the bracket. The tabs are bent in an alternate manner to each side of the bracket to form a T-shaped carrier member. The present invention contemplates the formation of 20-40 tabs, i.e., 10-20 tabs on each side of the bracket centerline.
The second part includes a plastic shoe having a wear face. The wear face has a channel formed therein to engage an associated chain. Opposite the wear face is a side which is adapted to engage the bracket. A series of hook-shaped tabs engage the tabs on the bracket. A retaining hook engages an end tab on the bracket to keep the shoe fixed to the bracket.
The assembly of the carrier and the shoe forms a chain guide which is typically applied to the tight strand of a power transmission chain.
Similar to the chain guide described above, a second embodiment of the present invention includes a chain tensioner arm having two main interlocking parts. A first part is a bracket as described in the first embodiment which further includes a hole optionally fitted with a bushing which is rotatably attached to a fixed pivot pin. The pivot pin is attached to the engine. A plastic shoe or the like is attached to the bracket. A chain tensioner is positioned to bear upon the bracket to cause the tensioner arm to tension a slack strand of the chain.
For a further understanding of the present invention and the objects thereof, attention is directed to the drawing and the following brief description thereof, to the detailed description of the preferred embodiment of the invention and to the appended claims.


REFERENCES:
patent: 4674723 (1987-06-01), Bayuk
patent: 4832664 (1989-05-01), Groger et al.
patent: 5045032 (1991-09-01), Suzuki et al.
patent: 5109992 (1992-05-01), Miller
patent: 5286234 (1994-02-01), Young
patent: 5665019 (1997-09-01), Sheffer et al.
patent: 5690569 (1997-11-01), Ledvina et al.
patent: 5711732 (1998-01-01), Ferenc et al.
patent: 5720682 (1998-02-01), Tada
patent: 5755034 (1998-05-01), Yas

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Chain guide or tensioner arm with sheet metal bracket and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Chain guide or tensioner arm with sheet metal bracket and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chain guide or tensioner arm with sheet metal bracket and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2607517

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.