Implements or apparatus for applying pushing or pulling force – Apparatus for hauling or hoisting load – including driven... – Device includes rotatably driven – cable contacting drum
Reexamination Certificate
1999-10-19
2001-05-01
Matecki, Katherine A. (Department: 3653)
Implements or apparatus for applying pushing or pulling force
Apparatus for hauling or hoisting load, including driven...
Device includes rotatably driven, cable contacting drum
C254S352000, C254S372000
Reexamination Certificate
active
06224039
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a chain block and, more particularly, to a hand operated chain block wherein a load sheave is rotated to wind up and down a load chain passing over the load sheave by the operation of a hand chain passing over a hand wheel.
2. Description of the Prior Art
In general, hand operated chain blocks of this type comprise a load sheave supported between two opposed side plates via bearings; a hand wheel disposed at the outside of one side plate to drive the load sheave through a drive shaft and a reduction gear mechanism; and a transmission mechanism having a mechanical brake which is interposed between the hand wheel and the load sheave to apply a given brake and are so structured that a load suspended from a hook of the load chain passing over the load sheave can be hoisted up and lowered down by the operation of a hand chain passing over the hand wheel.
Of these known chain blocks, some are provided with an overload protection mechanism that permits the hand wheel to freely rotate in the hoisting direction when a load in excess of a rated load of the chain block is applied to the load sheave, for preventing the hoist of the load more than the rated load.
The overload protection mechanism comprises, for example, a hub member threadedly mounted on the drive shaft and supporting thereon the hand wheel in a freely rotatable manner; a load setting mechanism, arranged at an axially outside end portion of the hub member, for setting a rated load; and two lining plates interposed in a freely rotatable manner between the hub member and the hand wheel and between the hand wheel and the load setting mechanism, respectively. The overload protection mechanism is so structured that when the hand wheel is rotated in the hoisting direction in the state in which a load more than a rated load as is preset by the load setting mechanism pressing the lining plates is being applied, slippage of the hand wheel can be caused between the two lining plates placed at both sides of the hand wheel to permit free rotation of the hand wheel with respect to the hub member.
On the other hand, for example when the overload protection mechanism is put into action in the hoist of the load by the application of a load more than the rated load, the hand wheel is held slipped between the two lining plates placed at both sides thereof, and as such cannot permit the lowering of the load. For permitting the lowering of the load in such a situation, the hub member is provided, in an outer periphery thereof, with a recessed portion in which a pin and a biasing spring for biasing the pin radially outwardly are housed and also a boss of the hand wheel is provided, in an inner periphery thereof, with a receiving portion that can permit the pin to be retained therein only when the hand wheel is rotated in the lowering direction, whereby an one-way mechanism that permits free rotation of the hand wheel with respect to the hub member only in the hoisting direction and restricts the free rotation of the hand wheel in the lowering direction is formed so that the lowering of the load can be permitted even when a load more than the rated load is applied.
With this arrangement, when the hand wheel is rotated in the lowering direction in the state in which it is being slipped between the two lining plates placed at the both sides of the hand wheel by the action of the overload protection mechanism, the pin is smoothly received in the receiving portion but is sometimes caught in the receiving portion even when the hand wheel is rotated in the hoisting direction, depending on the form of the receiving portion. As a result of this, despite the load being more than the rated load, the load is sometimes hoisted in an unstable state, or the pin and the receiving portion are sometimes damaged. Also, there is presented a disadvantage that the hand wheel, when rotated, may rattle to cause damage to the hub member and the hand wheel. In the hand operated chain block of this type, in particular, even a little pulling of the hand chain may cause the hand wheel to rotate a couple of turns, and as such will give increased opportunities of the pin and the receiving portion to confront each other, thus significantly expanding the influence of the disadvantages above. Further, when it comes to a small-sized chain block having the hand wheel of a small diameter, even the little pulling of the hand chain will give further increased opportunities of the pin and the receiving portion to confront each other, thus further significantly expanding the influence.
SUMMARY OF THE INVENTION
To solve the problems mentioned above, the present invention has been made. It is the object of the present invention is to provide a chain block that can ensure free rotation of a hand wheel when the hand wheel is rotated in a hoisting direction in the state in which an overload protection mechanism is in operation and also can ensure the lowering of a load when the hand wheel is rotated in a lowering direction.
The present invention provides a novel chain block comprising a load sheave with which a load chain is engageable; a hand wheel with which a hand chain is engageable; a transmission mechanism including a mechanical brake interposed between the hand wheel and the load sheave; an overload protection mechanism that supports the hand wheel and permits the hand wheel to freely rotate in a hoisting direction when a load more than a rated load is applied to the load sheave; and a drive shaft, passed through the load sheave, the transmission mechanism and the overload protection mechanism, to transmit drive applied from the hand wheel to the load sheave, wherein the overload protection mechanism includes a hub member threadedly engaged with the drive shaft and supporting thereon the hand wheel in a freely rotatable manner; and an one-way mechanism that permits the hand wheel to freely rotate in a hoisting direction with respect to the hub member and restricts the hand wheel freely rotating in a lowering direction; wherein the one-way mechanism includes a recess formed in an outer periphery of the hub member; an engaging member provided in the recess and normally biased radially outwardly; and a concave receiving portion, opening in an inner periphery of a boss of the hand wheel, to receive the engaging member therein; and wherein the receiving portion includes a slanted surface extended obliquely to guide the engaging member received in the receiving portion to the inner periphery of the boss of the hand wheel when the hand wheel is rotated in the hoisting direction; and a retaining surface, extended substantially along a radial direction of the inner periphery of the boss, to permit the engaging member received in the receiving portion to be retained in an inside of the receiving portion when the hand wheel is rotated in a lowering direction.
With this arrangement, when a load more than a rated load applied to the load sheave is tried to be hoisted by rotating the hand wheel in the hoisting direction, the hand wheel is permitted to freely rotate with respect to the hub member threadedly engaged with the drive shaft. Thus, the hoist of any load more than the rated load of the chain block is prevented. During the free rotation of the hand wheel with respect to the hub member, every time the engaging member of the one-way mechanism faces the receiving portions formed in the inner periphery of the boss of the hand wheel, the engaging member which is normally biased radially outwardly or toward the inner periphery of the boss of the hand wheel is received in the receiving portions, while on the other hand, the as-received engaging member is smoothly guided again to the inner periphery of the boss of the hand wheel along the slanted surface formed in each of the receiving portions.
This can produce the results that a possible problem that the engaging member may be caught in the receiving portion so that a load more than a rated load may be hoisted in an unstable state or a possible damage of th
Okamoto Yosiaki
Uesugi Takasi
Elephant Chain Block Co., Ltd.
Kilpatrick & Stockton LLP
Marcou George T.
Matecki Katherine A.
LandOfFree
Chain block does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Chain block, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chain block will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2440230