CFRP component for use in conveyor with its processed...

Stock material or miscellaneous articles – Web or sheet containing structurally defined element or... – Noninterengaged fiber-containing paper-free web or sheet...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S375000, C428S378000, C428S480000, C198S457040, C198S619000, C198S807000, C427S385500, C427S386000, C427S387000, C209S065000

Reexamination Certificate

active

06703116

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
This invention relates to a component (member) made of CFRP (carbon fiber reinforced plastics) for use in a conveyor, whose processed surface was subjected to a coating treatment, and relates to a method of coating the processed surface, and in particular, this invention relates to a component subjected to a coating treatment, which is suitable for conveying precision apparatus components such as liquid crystal displays and silicone wafers, and relates to a method of coating the processed surface.
2. Description of the Prior Art
Carbon fiber reinforced plastics (hereinafter referred to as “CFRP”) can be formed by impregnating carbon fibers with a matrix resin to form prepregs, then laminating the prepregs to form a laminate and then by curing the laminate at a suitable temperature.
CFRP are used in products for sports and leisure such as golf shafts, fishing rods and tennis rackets; industrial components such as products for use in an aircraft, printing ink rolls, pressure vessels and components for use in industrial robots; civil engineering materials such as materials for repairing bridges and materials for civil engineering repairing, and as liquid crystal displays become more large-sized in recent years, CFRP, which are lightweight and highly rigid, come to be used as components used in industrial robots for conveying the precision apparatus components instead of conventional metal materials such as aluminum.
Incidentally, the majority of precision apparatus components are apt to be extremely damaged by pollution with a dust, so that a CFRP component for a conveyor should be a component which does not pollute the precision apparatus components. Further, before the CFRP component for a conveyor is used, a dust on the CFRP component is wiped off in many cases with a cloth impregnated with a polar solvent such as an alcohol solvent or an acetone solvent, but a processed surface of the CFRP component for a conveyor has exposed carbon fibers and is easily damaged by a wipe with the cloth impregnated with the polar solvent, and thus precision apparatus components can be polluted with fine carbon particles generated from the carbon fibers.
SUMMARY OF THE INVENTION
An object of this invention is to provide a component made of CFRP for use in a conveyor, which component has been treated so as to overcome problems mentioned above and to hardly pollute precision apparatus components while making the best use of lightweight properties and high rigidity both inherent in CFRP, and a method of treating the component.
That is, the first aspect of this invention provides a CFRP component for use in a conveyor, whose processed surface is coated with a resin which is resistant to a polar solvent and which cures at a low temperature of 90° C. or less.
The second aspect of this invention provides a method of coating a CFRP component for use in a conveyor, which comprises applying the above resin diluted to be in a concentration of 5 to 60% by weight with a solvent onto a processed surface of the CFRP component for a conveyor, and then curing the resin applied at 90° C. or less.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
According to this invention, the resin which is resistant to a polar solvent and which cures at a low temperature of 90° C. or less (hereinafter referred to as “coating resin”) includes a silicon resin (a moisture-curing silicon resin, a silicon resin modified with alkyd, a silicon resin modified with epoxy, a silicon resin obtained by addition reaction), an alkyd resin, an unsaturated polyester resin (a peroxide-curing unsaturated polyester resin, an ultraviolet-curing unsaturated polyester resin), an alkyd resin modified with oil, a cyanoacrylate resin (a moisture-curing cyanoacrylate resin), an acrylic resin, a polyurethane resin (an alkyd polyol type polyurethane resin, an acryl polyol type polyurethane resin, a polyester polyol type polyurethane resin), an epoxy resin (an amine-curing epoxy resin, an ultraviolet-curing epoxy resin, a room temperature-intermediate temperature curing epoxy resin), a phenol resin, an epoxy alkyd resin, an epoxy ester resin, a resol/p-toluenesulfonic acid-curing phenol resin or a mixture of two or more resins selected from the above resins.
For example, the mixing ratio by weight of two resins selected from the above resins is preferably from 1:0.05 to 0.05:1.
In particular, the acrylic resin, the ultraviolet-curing epoxy resin, the room temperature-intermediate temperature curing epoxy resin, the moisture-curing silicon resin or a mixture of two or more of them is preferable because they have excellent resistance to a wipe with a polar solvent.
According to this invention, the matter that “the coating resin is resistant to a polar solvent” means that even if a surface coated with a resin cured is wiped with a cloth (e.g. a dust-free clean cloth (a polyester knit)) impregnated with a polar solvent (e.g. ethanol), the surface coated does not melt, does not swell and does not become sticky, and a dust such as fine carbon particles originating in carbon fibers is not substantially scattered from the component for a conveyor, and also means that the cloth used for wiping the surface coated with the resin cured and the surface coated are not substantially polluted with the fine carbon particles and the like.
The polar solvent referred to in this invention includes an acetone solvent or an alcohol solvent, such as acetone, diethyl ketone, methyl ethyl ketone, methanol, ethanol, isopropyl alcohol and a mixture thereof.
The polyurethane resin includes two-pack resin compounds comprising acryl polyol blended with monomers and adducts such as tolylene diisocyanate, 4,4′-diphenyl methane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate and polymethylene polyphenyl polyisocyanate. The isocyanates may be any commercially available ones, but in consideration of handling, the isocyanates are preferably the adducts.
A marketing product of the adduct includes CORONATE T-100, MILLIONATE MT, MILLIONATE MR-200 (trade name in each instance, produced by NIPPON POLYURETHANE INDUSTRY CO., LTD.). The acryl polyol includes DESMOPHEN A160X, DESMOPHEN A265 (trade name in each instance, produced by SUMITOMO BAYER URETHANE CO., LTD.), and TAKELAC UA-702, TAKELAC UA-902 (trade name in each instance, produced by TAKEDA CHEMICAL INDUSTRIES, LTD.).
The acrylic resin includes polyester acrylate, urethane acrylate, polyether acrylate, epoxy acrylate, polybutadiene acrylate, silicone acrylate, acryl acrylate and a mixture of two or more of these acrylates.
The coating resins can be cured at room temperature or with ultraviolet irradiation by adding a peroxide for room temperature curing or a catalyst for ultraviolet-curing to the coating resins.
The peroxide for room temperature curing includes diacyl peroxide, peroxy dicarbonate, peroxy ester and a mixture thereof, and these peroxides can be used in combination with a cobalt naphthenate accelerator. The catalyst for ultraviolet-curing includes aromatic diazonium salts, aromatic iodonium salts, aromatic sulfonium salts, metallocene compounds and a mixture thereof.
The epoxy resin is preferably a room temperature-intermediate temperature curing epoxy resin and an ultraviolet-curing epoxy resin.
The room temperature-intermediate temperature curing epoxy resin referred to in this invention is an epoxy resin curing usually at 10 to 90° C., preferably 20 to 80° C. If the resin cures at 90° C. or less, the CFRP component can be prevented in its thermal deformation.
The room temperature-intermediate temperature curing epoxy resin preferably includes epoxide reaction products of an alicyclic amine and/or an aromatic amine with an epoxy resin.
The alicyclic amine preferably includes menthene diamine, isophorone diamine, bis(4-amino-3-methyldicyclohexyl)methane, diaminodicyclohexyl methane, bis(aminomethyl)cyclohexane, N-aminoethyl piperazine, norbornane diamine, 3,9-bis(3-aminopropyl)2,4,8,10-tetraoxaspiro(5,5)undecane and Mannich addition compounds thereof.
The aromatic

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

CFRP component for use in conveyor with its processed... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with CFRP component for use in conveyor with its processed..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and CFRP component for use in conveyor with its processed... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3191032

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.