Certified proofing

Incremental printing of symbolic information – Ink jet – Controller

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S105000

Reexamination Certificate

active

06793310

ABSTRACT:

FIELD OF THE INVENTION
This application relates generally to proof printers, such as inkjet proofers.
BACKGROUND OF THE INVENTION
Proofing is a crucial step in high-volume printing operations. This is because high volume printing presses are typically expensive to set up and run, and they generally cannot be stopped before hundreds or even thousands of pages have been consumed. And if an error is not detected until after a whole run is complete, millions of pages can be wasted. Printing professionals therefore commonly use dedicated ink-jet proof printers to create so-called “contract proofs,” which they present to their customers for approval before beginning high-volume printing runs.
Given the potential costs at stake, it is of the utmost importance to ensure that these contract proofs match the final output. To this end, the print data are color corrected so that the inks used on the proof printer can accurately match the colors in the final output. The data may also be processed to allow the proof printer to accurately reproduce image artifacts characteristic of the high-volume printing process. And printing professionals must be careful to regularly calibrate their proofing printers and to consistently use appropriate inks and substrates for their proofs. But proofing errors can happen even in the most meticulously run operations, and the cost of such errors can be quite high.
SUMMARY OF THE INVENTION
Systems according to the invention introduce a radical new approach to proofing, in which the proofing system itself provides for the enforcement of certification standards, and such systems can prevent costly and time-consuming errors in high-volume printing. By automatically imposing a strict and complete set of certification standards, and physically identifying a proof to be in conformance with this set of certified proofing standards, proofers according to the invention can enable printing professionals to devote less time to monitoring calibration, stock, and employee handling of equipment and supplies. This can reduce proof cost and quality.
Systems according to the invention can drastically reduce the occurrence of proofer misuse. It is believed based on analysis of field service reports that a large part of the most troublesome proofing errors are caused by human errors and/or possibly well-intentioned tampering. Indeed, even the most scrupulous operators are not perfect, and may occasionally select inappropriate substrates or put them in upside-down, for example. And inexperienced or distracted operators may also make more serious errors, such as soiling proofers and proofs by reinserting used substrates that cannot absorb the excess ink deposited on them. By reducing these types of errors, systems according to the invention may be capable of consistently producing higher quality proofs in real conditions, while avoiding waste in proofing inks and substrates. And customers may be able to better judge a proof that meets a consistent, comprehensive, and automatically enforced set of standards, than one that is suspected to be subject to possible variations.
Systems according to the invention can also document the certification by printing a certification notice on the proof itself. This conveys to both the operator and customer that particular certification standards were adhered to in the preparation of the proof, and can identify those standards unambiguously. Printing a certification notice on the proof may also reduce the possibility of mistaking an earlier draft run for a final sign-off proof.
Systems according to the invention may additionally be beneficial in that they allow for simultaneous detection of a variety of types of certification information from a single substrate sensor. Such systems can reliably and substantially simultaneously derive loading information, substrate makeup information, and even individual substrate identity from marks that can be readily inscribed on substrate materials in bulk operations. This allows systems according to the invention to obtain a comprehensive and powerful set of certification signals in a cost-effective manner.
And systems according to the invention can use media sequence numbers obtained from the sensor to avoid re-loading a substrate and thereby causing soiling of print engine parts with excess ink that the substrate can no longer absorb. Sequence numbers can also provide a precise remaining paper counter and enable efficient and precise tracking of recalls of bad stock. In some instances, sequence numbers may be even be useful in detecting counterfeit substrates.
Sequence numbers can further provide for efficient automated tracking of sheets within an organization. For example, some larger print shops employ centralized proofing facilities that are located in different cities than are the presses for which they are to provide proofs. In these types of situations, users at the press locations can use the sequence numbers to access a database of sheet parameters to confirm the settings used for the proof, instead of having to contact the proofing facility. And if some bad proofs are received in a batch of proofs sent from the proofing location, the sequence number can be used to help pinpoint the machine that generated them.
In one general aspect, the invention features a set of ink-jet printable proofing sheets that includes at least five sheets. Each of these sheets comprises a first printable face having a periphery including first, second, third, and fourth edges. The first and third edges are disposed opposite each other on the first printable face, and the second and fourth edges are disposed opposite each other on the first printable face. The first face has properties resulting from a deposited ink drop print-enhancing treatment. Each sheet also includes a second face sharing the periphery and the first, second, third, and fourth edges of the first printable face, and a first machine-readable mark located on one of the first and second faces and including a plurality of data areas of different densities, with the combination of densities in the data areas being unique to each sheet.
In preferred embodiments, the first printable face can include an added deposited ink drop print-enhancing composition. The first mark on each sheet can include a plurality of fields, with the marks being encrypted using a public-key encryption sheet. The combination of at least some of the density differences in the marks on each of the sheets can uniquely identify a type for the sheet on which they are located. The combination of at least some of the density differences in the marks on each of the sheets can uniquely identify a size for the sheet on which they are located. The combination of at least some of the density differences in the marks on each of the sheets can uniquely identify a lot for the sheet on which they are located. The combination of at least some of the density differences in the marks on each of the sheets can define an error-correcting code for the sheet on which they are located. The first mark on each sheet can include at least one registration marking in addition to the data areas. The first mark on each sheet can include at least three registration markings in addition to the data areas. The first mark on each sheet can include a plurality of triangular data markings. The first mark can be printed in cyan ink. The first mark can be printed with an invisible ink. The first machine-readable mark can have a chroma of at least about 20 in L′a′b′ space. Each sheet can further include a second machine-readable mark located on a same one of the first and second faces and including a plurality of data areas of different densities, with the combination of densities in the data areas being unique to each sheet in the plurality of sheets. The first and second marks on each sheet can include at least one registration marking in addition to the data areas. The first and second marks on each sheet can include at least three registration markings in addition to the data areas. The plurality of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Certified proofing does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Certified proofing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Certified proofing will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3236993

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.