Ceramic composite structure and process for the production there

Stock material or miscellaneous articles – Composite – Of inorganic material

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

428701, 428702, 428212, 428408, 264 297, 264 44, B32B 900

Patent

active

06156446&

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF THE INVENTION

The present invention pertains to a one-piece, refractory ceramic composite body consisting of at least two layers located next to one another as well as to a process for manufacturing same.
Such a composite body has been known from DE 41 08 153 A1. It is called a "refractory molding" there and it has at least two nonmetallic shells that envelope one another at least partially.
Moldings and composite bodies of this type are used, e.g., as wearing parts in the spouts of metallurgical vessels (so-called nozzles, pouring spouts and channels, submerged pipes, but also as sliding plates or the like).
The prior-art refractory molding comprises essentially an inner shell and an outer shell, which are prefabricated in a tubular shape. While the outer shell is said to consist essentially of carbon-bound aluminum oxide according to one embodiment, zirconium dioxide is selected as the material for the inner shell.
The material for the outer shell was selected from the viewpoint that the outer shell shall be able to be heated inductively in an electromagnetic field. It is achieved as a result that the inner shell can be preheated slowly and uniformly to a value close to its operating temperature. The risk of cracking is avoided as a result. Due to the inductive heating of the inner shell, it assumes the conduction of heat to the outer shell.
To prepare the prior-art refractory molding, it is necessary to prefabricate the inner shell and the outer shell separately and to subsequently prepare a composite body. This is difficult, among other things, even because of the small wall thicknesses of the moldings.
A refractory casting sleeve for a metallurgical vessel, which consists of, e.g., zirconium carbide and has an inner carbon coating, has been known from FR-PS 1 525 154. The casting sleeve is surrounded by an induction coil, by means of which the casting sleeve is heated.
According to the suggestion made in EP 0 379 647 B1, the induction coil is part of the inner wall of a multilayer, refractory ceramic tubular body.
A process for the inductive heating of a molding made of ceramic material, which does not couple inductively at room temperature, but can be coupled to the field of the inductor at increased temperature, is described in DE 43 01 330 A1. The tubular molding consists of zirconium dioxide, which is practically electrically nonconductive at ambient temperature but which develops electric conductivity at increased temperatures, beginning at, e.g., 800.degree. C. The molding is provided on the inside with a coating that is electrically conductive even at room temperature.
The refractory nozzle according to DE 44 28 297 A1 consists of a wear-resistant core consisting of zirconium dioxide, which is provided with a pouring opening, and a jacket surrounding same, consisting of a carbon-bound ceramic material, which can be heated inductively beginning from room temperature. The jacket is shaped around the prefabricated core and is compacted.
The inductive heating of the said refractory ceramic wearing parts represents a considerable technological progress over conventional methods of preheating (e.g., by direct exposure to burner flames), because a uniform, "soft" heating of the component is achieved, so that chipping off or cracking due to different heat zones in the component can be practically ruled out. As a result, the essential safety of such parts is substantially increased, for example in the spout area of a metallurgical melting vessel.


SUMMARY OF THE INVENTION

Based on the state of the art described in the introduction, the basic object of the present invention is to offer a refractory ceramic body that can be heated directly or indirectly in the electromagnetic field of an induction coil and makes possible a simplified manufacture compared with the prior-art moldings. In addition, workpieces (moldings) with small wall thicknesses, such as submerged spouts, shall also be covered.
The present invention is based on the consideration that the manufacture of such a component is

REFERENCES:
patent: 5052597 (1991-10-01), Bruckner
patent: 5054664 (1991-10-01), Bruckner
patent: 5413744 (1995-05-01), Bruckner et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ceramic composite structure and process for the production there does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ceramic composite structure and process for the production there, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ceramic composite structure and process for the production there will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-959731

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.