Coating processes – Applying superposed diverse coating or coating a coated base – Synthetic resin coating
Reexamination Certificate
2000-10-04
2003-04-29
Barr, Michael (Department: 1762)
Coating processes
Applying superposed diverse coating or coating a coated base
Synthetic resin coating
C427S384000, C427S407100, C524S080000, C524S914000
Reexamination Certificate
active
06555177
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to water-based hardwood floor finishing products and methods of applying the products on site.
BACKGROUND OF THE INVENTION
Hardwood flooring has long enjoyed favor with consumers due to the unique richness and elegance that it adds to a home or business setting. Although hardwood flooring is a consumer favorite, inherent physical characteristics of hardwood flooring make it susceptible to damage from ordinary usage and the occasional accident. As such, it has become traditional practice in the flooring industry to protect hardwood floors with some form of coating or finish to preserve aesthetic qualities, and ultimately extend the useful life of the surface.
Many protective finishes are known in the flooring industry. Protective finishes in the prior art include varnishes, acrylics, urethanes, and epoxies or combinations thereof. In general, protective finishes are applied to hardwood surfaces in successive layers, with each layer performing a specific purpose. For example, a protective finish normally constitutes primers applied directly to the hardwood surface to bond and seal the porous wood itself and top coat layers applied over the sealing layers to provide sheen and stain resistance. In recent years, water-based finishes (i.e., solutions in which water is the primary solvent) have become popular due to environmental and health concerns. In addition, various layers may also contain additives including co-solvents, defoamers, flow additives and wax emulsions to provide ease of application and improve the overall effectiveness of the protective finish.
Although the above-mentioned primers and top coats provide some protection against mechanical damage due to scratching, gouging, scuffing or the like, the hardwood flooring industry has invested much time and effort into identifying further additives for floor finishes in order to improve the overall durability of hardwood floor surfaces. Unfortunately, increasing finish durability often results in a finish with reduced abilities to preserve aesthetic qualities. Thus, the fine balance between durability and preservation of desirable characteristics such as clarity is difficult to attain. Nonetheless, such finishes are extremely desirable.
Finished hardwood floors also suffer from a problem termed panelization. Panelization, to be more thoroughly discussed below, results when resins contained in the primer coat invade the gaps between hardwood boards, cross-link, and cause neighboring boards to become rigidly affixed to each other as if glued together. Unfortunately, when hardwood boards contract due to seasonal changes in humidity, large sections of panelized flooring contract to leave unsightly, uneven gaps at the boundaries of the panelized units. Without panelization, the gaps between boards would be evenly distributed, and hence smaller and less noticeable throughout seasonal humidity cycles. A method of finishing hardwood floors that avoids this problem, but provides durability and is aesthetically pleasing, is needed.
BRIEF SUMMARY OF THE INVENTION
The invention is a hardwood floor finishing method that uses water-based coatings and exhibits improved durability during ordinary usage and against accidental damage. It also substantially reduces or eliminates the above mentioned panelization problem. In general, the finishing method is intended to be carried out on-site in several simple, efficient and safe steps. In its preferred form, the method involves the application of a ceramic-based armor coat over the primer layers in order to improve the durability and wearability of the floor finish.
The inventive method disclosed herein is preferably implemented on a new floor by applying successive layers of primer, ceramic armor and top coat to a newly screened, cleaned and tacked hardwood surface. The primer is a water-based primer having a low solid content and low co-solvent concentration in order to reduce or eliminate panelization. As with many conventional primers, the primer contains a mixture of acrylic and polyurethane polymer resin dispersions that are not water-soluble, but are suspended in the water/co-solvent mixture. Alternatively, the primer may be a copolymer substitute for the acrylic and polyurethane mixture. Upon application to the prepared surface, this water-based primer penetrates the pores of the hardwood and acts to thoroughly seal the exposed hardwood surface. Use of a water-based primer to seal a hardwood surface is widely known in the field. However, as mentioned, the method disclosed herein involves applying a water-based primer having an unusually low resin content and low co-solvent concentration. It is believed that the combination of the low resin content and a low co-solvent concentration reduces the flow of resins into the gaps between the hardwood boards during the initial drying process. A second coating of primer is applied after initial drying of the first primer coat. Two coats of primer are needed because the coats are thin. The problem posed by panelization of hardwood floor boards is substantially eliminated by using a thin coating of low solid content/low co-solvent concentration primer, but a sufficient primer build is obtained by using two coats of primer.
It has been found that panelization results from the use of primers having a high solid content of polymers or copolymer resins and a high concentration of co-solvent. This combination promotes not only the flow of uncrosslinked polymer or copolymer resins into the existing gap between new hardwood boards but also the subsequent solvation step necessary to cross link the resins. However, the polymer or copolymer resins remain uncrosslinked when in a solution having a high water content. Only when water is removed as by evaporation, are the polymer or copolymer resins solved into the increasing concentration of co-solvent. Once solved, the polymer or copolymer resin crosslink into a rigid composition potentially resulting in a group of boards being joined or glued together to form a panel-like unit. It should be noted that hardwood normally contracts in a direction across the grain, and therefore the width of the boards normally shrinks when the hardwood boards respond to seasonal changes in humidity. The unfortunate result of this phenomenon on a panelized floor is that gap width is consequently spread unevenly across the floor surface. Instead of small gaps of uniform width existing between each new hardwood board, a panelized group of boards will have essentially no gaps on its interior, but much larger and noticeable gaps will surround the panel. The gaps due to panelization are especially evident during the winter when humidity is relatively low. These noticeable gaps in the hardwood surface are obviously undesirable.
The low concentration of acrylic and polyurethane polymer resins or copolymer resins in the primer effectively reduces the concentration of uncrosslinked resin in the gap area when the primer is first applied. Subsequently, the concentration of the crosslinked resins in the gap area remains relatively low for an extended time period because the water within the gaps takes longer to evaporate than on the hardwood boards' exposed surfaces. Thus, if a second layer of primer is applied within a certain amount of time (e.g. about 45 minutes), the gap area between hardwood boards remains relatively free of cured resins.
After the primer layers are dry, the floor is then screened, vacuumed and tacked with a dampened cloth to remove all dust particles. Then, within about two to three hours of applying the second primer coat, the armor coat is applied to the floor. The armor coat effectively seals over the gap which should at this time still contains the primer solution with a relatively high concentration of water. The primer solution in the gap area is consequently left undried. In this manner, the resins in the armor coat are not allowed to reside deep within the gaps. Rather, as the armor coating dries, it forms a relatively thin bridge across the gap between the bo
Magnusson Tryggvi
Pollak Guenther
Barr Michael
Boyle Fredrickson Newholm Stein & Gratz S.C.
Tsoy Elena
LandOfFree
Ceramic-based hardwood floor finishing method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ceramic-based hardwood floor finishing method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ceramic-based hardwood floor finishing method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3042086