Centrifuge compression combustion turbine

Power plants – Combustion products used as motive fluid – Combustion products generator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C415S198100, C416SDIG002

Reexamination Certificate

active

06490865

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field
This invention relates to gas and combustion fired turbines with compressor fans and housings. More particularly it pertains to a two stage compression combustion turbine with a turbocharger compressor associated with the air inlet. It employs curved radial sloping impeller blade compressor units, which initially densify the air before entering an optional further peripheral compression or collection chamber. This compressed air is then directed into the combustion chamber of a turbine. Alternatively, the turbocharger compressor may be located within the turbine exhaust gas stream to convert the energy in the gas stream leaving the turbine into rotational energy. It is particularly suited for use with jet engines.
2. State of the Art
A number of turbocompressors for natural gas fired or combustion turbines, such as the high altitude jet engine of Serriades, U.S. Pat. No. 3,260,046, are known. Lieu, U.S. Pat. No. 5,344,737 discloses an impeller disc vane design with tapered blades to compress gas passing through the crossover duct within the compressor section. Treager, in Aircraft Air Turbine Engine Technology, 1970 by McGraw-Hill, Inc. also discloses an impeller disc vane design with tapered blades to compress gases between the blades. These references do not have a plurality of stacked radial fan blades surrounding a central interior air intake area to function as a centrifugal fan. Lysholm, U.S. Pat. No. 2,244,467 discloses a radial turbine blade design with a central intake area for gases directed therethrough, but does not disclose curved blades with diminishing heights toward the perimeter to compress these gases. Cali, U.S. Pat. No. 3,265,290 discloses an axial flow compressor for jet engines, wherein the weir between the fairing and stator section is eliminated. Rosman, U.S. Pat. No. 3,945,101 discloses a rotor wheel for radial-flow fans and turbines with a center entry area. Fujino, U.S. Pat. No. 4,224,010 discloses a multi-stage turbocompressor with diagonal-flow impellers. Bachl, U.S. Pat. No. 3,226,085 discloses a rotary turbine with an axial flow component with a tangential flow path. O'Connor, U.S. Pat. No. 4,995,787 discloses an axial flow impeller with blades having a pronounced curve design. Wosika, U.S. Pat. No. 4,435,121 discloses a radial impulse turbine having low and high pressure sections. Teshima el al., U.S. Pat. No. 4,274,804 discloses an axial flow turbine with a helical flow path generated and used within the turbine. Seippel el al., U.S. Pat. No. 3,953,148 discloses a configuration of the last moving blade row of a multi-stage turbine, which is dramatically twisted. Pauly, U.S. Pat. No. 5,741,123 discloses a turbocharger compressor fan and housing for use with diesel engines, marine engines, combustion engines, and high altitude aircraft engines. Wislicenus, U.S. Pat. No. 2,395,704 discloses a water pump with curved blades, which is unsuitable for use as a high speed compression combustion turbine.
Of general interest is Quinn, U.S. Pat. No. 5,328,333, which discloses a rotating thrust producing apparatus employing circular foils for producing thrust in an axial direction when rotated.
The invention described below provides a centrifuge compressor combustion turbine with a turbocharger employing a series of compressor units employing curved impeller blades with radially diminishing cross sections to optimize gas collection, rotating thrust and gas densification.
SUMMARY OF THE INVENTION
The invention comprises a centrifuge compressor combustion turbine heat engine in which fuel burns to heat compressed air and the hot air and waste gases to drive a turbine. It employs a series of stacked compressor units having curved fan blades to optimize air collection and rotation densification. These blades not only gather intake air, but compress it between diminishing longitudinal cross sections flow channels between the blades, which may be downward sloping from their inlets to their outlets, or have walls of increasing thickness to radially decrease the cross sectional areas between blades to compress gases as they flow therebetween. After initial blade compression, the air may be further densified in a peripheral compression chamber. These compressor units thus function as a turbocharger and are generally positioned within the inlet air intake. They comprise a curved radial blade compressor system, which simultaneously collects and densifies the air before being further compressed in a peripheral compression chamber before entering a natural gas fired or combustion turbine. Alternatively, the compressor units may be placed after the turbine exhaust to collect the exhaust stream of a natural air or combustion turbine to convert the exiting gas energy into rotational energy.
The centrifuge compressor combustion turbine comprises a turbine frame defining air intake and exhaust openings. A diffuser section is attached to the turbine frame proximate the air intake having a plurality of compressor units. Each compressor unit has a housing defining a central air inlet leading into a peripheral compression chamber having compressed air outlets leading into a compressed air collection chamber. The compressor units are interconnected and operably associated with a turbine drive shaft rotatably mounted within the turbine frame. The drive shaft also supports a combustor section to burn fuel to heat the intake air to drive a fan turbine located on the drive shaft behind the diffuser section. The compression chamber has rotatably mounted therein with seating structure a plurality of interconnected stacked compressor units, each having an impeller attached to a rotatable circular impeller disc drive base. Each impeller disc drive base defines an opening surrounding the central air inlet opening, except for the last, which is covered and attached to the shaft.
In one preferred embodiment, a plurality of curved spaced radial sloping impeller blades having greatest height proximate the central air inlet and least height proximate the air outlets. They are attached to the top of each drive base forming sloping diminishing cross sectional air flow channels between the blades and housing cover. The impeller blades define impeller blade flow channels with air inlets in communication with the central air inlet. The impeller blades also define air outlets in communication with the air collection chamber to direct compressed air into the turbine combustor section. When connected and stacked, the compressor units form an open topped air intake in communication with the central air inlet of each impeller drive base so that the impellers rotate in unison and each air inlet is in alignment and communication with the next successor air inlet. A diffusion disc covers the last air inlet opening, and is attached to the turbine drive shaft with securing means to rotate the compressor unit impellers. The number of the compression units is selected to provide the desired compressed volume throughput into the turbine combustor section.
Thus, the plurality of stacked interconnected impeller compressor units surround and rotate about the central air inlet. The compressor units direct compressed air into the turbine combustor section wherein fuel burns to heat and expand the gases to turn a turbine. The open top of the stacked compressor units is rotatably attached to and in communication with the inlet opening in the frame, when the turbocharger is mounted before the turbine compressor section. Each impeller is mounted and seated to the rotating base of each compression unit such that each impeller is positioned to be in communication with its respective air inlet. A similar compressor system may be employed within the exhaust to convert the energy in the gas stream leaving the turbine into rotational energy.
Preferably, each impeller has a circular drive base impeller disc defining a central opening, which is attached to and surrounds the air inlet opening of the cylindrical support structure. A plurality of curved radial fan blades is then attached

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Centrifuge compression combustion turbine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Centrifuge compression combustion turbine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Centrifuge compression combustion turbine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2917191

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.