Centrifugal filtration apparatus

Liquid purification or separation – Casing divided by membrane into sections having inlet – Planar membrane

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S323100, C210S360100, C210S380100, C210S477000, C422S072000, C422S105000, C436S177000

Reexamination Certificate

active

06344140

ABSTRACT:

TECHNICAL FIELD
The present invention relates to the filtration field, and more particularly, to an improved centrifugal filtration apparatus for filtering and concentrating a solution. The improvement comprises eliminating any retentate pockets below the filter and instead employing a port on the filtrate side of the filter that is above the bottom level of the filter, thereby not permitting filtering to dryness.
BACKGROUND ART
The filtration of fluids may be accomplished through the use of filtration devices which utilize microporous filters to filter and concentrate a macro-molecular solution is well known. This technique has been used in centrifugal filtration apparatuses that rely on centrifugal forces to create pressure in the apparatus to force solutions through a filter which separates liquid solutions into filtrate and concentrate.
There are certain drawbacks, however, associated with conventional centrifugal filtration apparatus. While many apparatus designs can prevent filtering to dryness in certain applications, they do not in other applications, such as a swinging bucket centrifuge. Those that work in both a fixed angle centrifuge and a swinging bucket centrifuge without filtering to dryness may present the problem of either retaining a different amount of concentrate when used in a fixed angle centrifuge than they will when used in a swinging bucket centrifuge or retaining a different amount of concentrate when used in fixed angle centrifuges with different fixed angles.
Some of the conventional centrifugal filtration apparatus require a second spin to remove the retained concentrate (i.e. dead stop volume). In these apparatus it is difficult or impossible to remove the retained concentrate from the concentrate tube with a pipette.
Another problem with some of the conventional centrifugal filtration apparatus is that as the concentrate volume approaches its final retained volume, the active filter area approaches zero. Therefore, the filtration rate will slow dramatically as the concentrate volume approaches its final retained volume.
Another problem with the conventional centrifugal filtration apparatus is that they are open systems (i.e. they contain a venting means that vents to the atmosphere in the centrifuge).
Yet another problem with some of the conventional centrifugal filtration apparatus is that they are not scaleable (i.e. they are designed to be used as small volume centrifugal filters, or large volume centrifugal filters, not both).
Certain types of filtration devices, such as that disclosed in U.S. Pat. No. 4,632,761 to Bowers et alia, are capable of preventing filtration to dryness and contain a dead stop feature which causes filtration to cease while there is concentrate remaining within the apparatus. This device, however, filters to dryness when spun at a 90° angle and therefore the dead stop feature will not work if the device is spun in a swinging bucket centrifuge. Also, in this type of filtration device, the amount of concentrate remaining after dead stop is dependent upon the angle of the centrifuge rotor. The filter surface area in this type of device is limited by the diameter of the device, and the surface area is relatively small when compared to the volume of liquid solution within the housing. Another problem with this type centrifugal filtration apparatus is that is an open system (i.e. it contains a venting means that vents to the atmosphere in the centrifuge). This type of filtration device is conductive to clogging because the heaviest and denser molecules within the liquid solution are forced into the membrane filter. Accordingly, this device is limited because it will filter to dryness when spun in a swinging bucket centrifuge, it will filter to different dead stop volumes when used in fixed angle rotors with different angles, it is an open system and will vent potentially harmful gases to atmosphere during filtration, and its active filter surface area is limited by the diameter of the device.
The types of filtration devices disclosed in U.S. Pat. No. 4,722,792 to Miyagi et alia are capable of preventing filtration to dryness and contain a dead stop feature which causes filtration to cease while there is concentrate remaining within the apparatus. In this type of filtration device, the amount of concentrate remaining after dead stop is dependent upon the angle of the centrifuge rotor. Therefore, the dead stop volume will be different when the device is used in a swinging bucket rotor centrifuge than it will be when used in a fixed angle rotor, and will also be different when the device is used in fixed angle rotor centrifuges of different rotor angle. This means that the results obtained from this type of device when used in one type of centrifuge rotor cannot be compared to the results obtained from this type of device when used in another type of centrifuge rotor. Another problem with this type centrifugal filtration apparatus is that is an open system (i.e. it must contain a venting means that vents to the atmosphere in the centrifuge). Another problem with this type of centrifugal filtration apparatus is that the filtration rate starts out high because of its relatively large filter surface area. However, as the concentrate volume approaches its dead stop volume, the active filter area approaches zero. Therefore, the filtration rate will slow dramatically as the concentrate volume approaches its final retained volume. Accordingly, this device is limited because it will filter to different dead stop volumes when used in centrifuge rotors with different angles, it is an open system and will vent potentially harmful gases to atmosphere during filtration, and the filtration rate will slow dramatically as the concentrate volume approaches the dead stop volume.
The types of filtration devices disclosed in U.S. Pat. No. 5,112,484 to Zuk are capable of preventing filtration to dryness and contain a dead stop feature which causes filtration to cease while there is concentrate remaining within the apparatus. In this type of filtration device, the amount of concentrate remaining after dead stop is dependent upon the angle of the centrifuge rotor. Therefore, the dead stop volume will be different when the device is used in a swinging bucket rotor centrifuge than it will be when used in a fixed angle rotor, and will also be different when the device is used in fixed angle rotor centrifuges of different rotor angle. This means that the results obtained from this type of device when used in one type of centrifuge rotor cannot be compared to the results obtained from this type of device when used in another type of centrifuge rotor. Another problem with this type centrifugal filtration apparatus is that is an open system (i.e. it must contain a venting means that vents to the atmosphere in the centrifuge). Another problem with this type of centrifugal filtration apparatus is that as the concentrate volume approaches its final retained volume, the active filter area approaches zero. Therefore, the filtration rate will slow dramatically as the concentrate volume approaches its final retained volume. Although the retained concentrate can be removed from this device with a pipette, the retained concentrate is best removed from this type of device using the concentrate cup with a second spin. This type of device is not well suited to filter small volumes. Accordingly, this device is limited because it will filter to different dead stop volumes when used in centrifuge rotors with different angles, it is an open system and will vent potentially harmful gases to atmosphere during filtration, the filtration rate will slow dramatically as the concentrate volume approaches the dead stop volume, it is not designed to filter small volumes, and it is not easy to remove the dead stop volume with a pipette.
The types of filtration devices disclosed in U.S. Pat. No. 5,490,927 to Herczeg are capable of preventing filtration to dryness and contain a dead stop feature which causes filtration to cease while there is concentrate remaining within the apparatus

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Centrifugal filtration apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Centrifugal filtration apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Centrifugal filtration apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2953190

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.