Chemistry: molecular biology and microbiology – Animal cell – per se ; composition thereof; process of... – Method of culturing cells in suspension
Reexamination Certificate
1998-12-31
2001-04-10
Redding, David A. (Department: 1744)
Chemistry: molecular biology and microbiology
Animal cell, per se ; composition thereof; process of...
Method of culturing cells in suspension
C435S041000, C435S068100, C435S171000, C435S348000, C435S366000, C435S410000
Reexamination Certificate
active
06214617
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to an improved method and apparatus for the continuous culture of biocatalysts. More particularly, the present invention relates to a method and apparatus for culturing micro-organisms, or plant or animal cells, or subcellular cell components as three-dimensional arrays immobilized in centrifugal force fields which are opposed by liquid flows. The present invention allows the maintenance of extremely high density cultures of biocatalysts and maximizes their productivity.
BACKGROUND OF THE INVENTION
The term “fermentation” as used herein means any of a group of chemical reactions induced by living or nonliving biocatalysts. The term “culture” as used herein means the suspension or attachment of any such biocatalyst in or covered by a liquid medium for the purpose of maintaining chemical reactions. The term “biocatalysts” as used herein, includes enzymes, vitamins, enzyme aggregates, immobilized enzymes, subcellular components, prokaryotic cells, and eukaryotic cells. The term “centrifugal force” means a centripetal force resulting from angular rotation of an object when viewed from a congruently rotating frame of reference.
The culture of microbial cells (fermentation) or animal and plant cells (tissue culture) are central to a multiplicity of commercially-important chemical and biochemical production processes. Living cells are employed in these processes as a result of the fact that living cells, using generally easily obtainable starting materials, can economically synthesize commercially-valuable chemicals.
Fermentation involves the growth or maintenance of living cells in a nutrient liquid media. In a typical batch fermentation process, the desired micro-organism or eukaryotic cell is placed in a defined medium composed of water, nutrient chemicals and dissolved gases, and allowed to grow (or multiply) to a desired culture density. The liquid medium must contain all the chemicals which the cells require for their life processes and also should provide the optimal environmental conditions for their continued growth and/or replication. Currently, a representative microbial cell culture process might utilize either a continuous stirred-tank reactor or a gas-fluidized bed reactor in which the microbe population is suspended in circulating nutrient media. Similarly, in vitro mammalian cell culture might employ a suspended culture of cells in roller flasks or, for cells requiring surface, attachment, cultures grown to confluence in tissue culture flasks containing nutrient medium above the attached cells. The living cells, so maintained, then metabolically produce the desired product(s) from precursor chemicals introduced into the nutrient mixture. The desired product(s) are either purified from the liquid medium or are extracted from the cells themselves.
Examples of methods employing fermentations of cells growing in either agitated aqueous suspension or with surface attachment are described, for example, in U.S. Pat. Nos. 3,450,598; 3,843,454; 4,059,485; 4,166,768; 4,178,209; 4,184,916; 4,413,058; and 4,463,019. Further reference to these and other such conventional cell culturing techniques may be found in such standard texts as Kruse and Patterson, Tissue Culture Methods and Applications, Academic Press, New York, 1977; and Collins and Lyne's Microbiological Methods, Butterworths, Boston, 1989.
There are a number of disadvantages inherent in such typical fermentation processes. On a commercial scale, such processes require expensive energy expenditures to maintain the large volumes of aqueous solution at the proper temperature for optimal cell viability. In addition, because the metabolic activity of the growing cell population causes decreases in the optimal levels of nutrients in the culture media and causes changes in the media pH, the process must be continuously monitored and additions must be made to maintain nutrient concentration and pH at optimal levels.
In addition, the optimal conditions under which the desired cell type may be cultured are usually near the optimal conditions for the growth of many other undesirable cells or microorganisms. Extreme care and expense must be taken to initially sterilize and to subsequently exclude undesired cell types from gaining access to the culture medium. Next, such fermentation methods, particularly those employing aerobic organisms, are quite often limited to low yields of product or low rates of product formation as a result of the inability to deliver adequate quantities of dissolved oxygen to the metabolizing organism. Finally, such batch or semi-batch processes can only be operated for a finite time period before the buildup of excreted wastes in the fermentation media require process shutdown followed by system cleanup, resterilization, and a re-start.
The high costs associated with the preparation, sterilization, and temperature control of the large volumes of aqueous nutrient media needed for such cultures has led to the development of a number of processes whereby the desired cell type or enzyme can be immobilized in a much smaller volume through which smaller quantities of nutrient media can be passed. Cell immobilization also allows for a much greater effective density of cell growth and results in a much reduced loss of productive cells to output product streams. Thus, methods and processes for the immobilization of living cells are of considerable interest in the development of commercially valuable biotechnologies.
An early method for the immobilization of cells or enzymes involved the entrapment of such biocatalysts on or within dextran, polyacrylamide, nylon, polystyrene, calcium alginate, or agar gel structures. Similarly, the ability of many animal cells to tenaciously adhere to the external surface of spherical polymeric “microcarrier beads” has likewise been exploited for the immobilization of such cells. These gel- or bead-immobilization methods effectively increase the density of the biocatalyst-containing fraction, thereby effectively trapping these structures in the lower levels of relatively slow-flowing bioreactor chambers. Such gel-entrapment or microcarrier-immobilized methods are taught, for example, in U.S. Pat. Nos. 3,717,551; 4,036,693; 4,148,689; 4,189,534; 4,203,801; 4,237,033; 4,237,218; 4,266,032; 4,289,854; 4,293,654; 4,335,215; and 4,898,718. More background information on cell immobilization techniques is discussed in Chibata, et al., “Immobilized Cells in the Preparation of Fine Chemicals”, Advances in Biotechnological Processes, Vol. I, A.R. Liss, Inc., New York, 1983. See also Clark and Hirtenstein, Ann. N.Y. Acad. Sci. 369, 33-45 (1981), for more background information on microcarrier culture techniques.
These immobilization methods suffer from a number of drawbacks. First, such entrapment of cells within gels has been shown to interfere with the diffusion of gases (particularly oxygen and carbon dioxide) into and out of the cell environment, resulting in either low cell growth (reduced oxygen input) or gel breakage (high internal CO
2
pressure). In addition, the poor mechanical properties and high compressibility of gel-entrapment media lead to unacceptably high pressure problems in packed bed bioreactors. Similarly, the crushing of microcarrier beads and the destruction of attached cells by hydraulic shear forces in agitated tank bioreactors (necessary to increase gas exchange) leads to reduced viability and productivity.
Another method for the immobilization of living cells or enzymes currently in use involves the use of packed-bed bioreactors. In these methods, free cells or cells bound to microcarrier beads are suspended in a rigid or semi-rigid matrix which is placed within a culture bioreactor. The matrix possesses interstitial passages for the transport of liquid nutrient media into the bioreactor, similarly disposed passages for the outflow of liquid media and product chemicals, and similar interstitial passages through which input and output gases may flow. Bioreactors of this type include the vat type, the packed-
Kilpatrick & Stockton LLP
Kinetic Biosystems Inc.
Redding David A.
LandOfFree
Centrifugal fermentation process does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Centrifugal fermentation process, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Centrifugal fermentation process will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2513810