Communications: electrical – Systems – Selsyn type
Reexamination Certificate
2001-03-26
2004-06-01
Horabik, Michael (Department: 2635)
Communications: electrical
Systems
Selsyn type
C455S402000, C368S046000
Reexamination Certificate
active
06744351
ABSTRACT:
TECHNICAL FIELD
The present invention relates to an appliance having a clock that is set automatically based on a radio frequency signal that is received by the appliance.
BACKGROUND ART
In some countries, there is a nationally broadcast radio frequency time signal. The time signal uses a standard format and indicates the current time as measured by an atomic clock. In the United States, the radio station WWVB broadcasts a standard timing signal at 60 kHz. The timing signal uses a predetermined format so that the signal may be recognized by radio controlled clocks. A radio controlled clock is a clock that includes a receiver for receiving the broadcast timing signal. The clock receives the signal and automatically sets itself. When a person buys a new radio controlled clock, the person must manually set the time zone. For example, in the United States, there are four different time zones, namely, Pacific Time, Central Time, Mountain Time, and Eastern Time. Some areas in the United States observe Daylight Savings Time while others do not. In any area, the person must manually set the time zone and manually correct the clock's automatic changes for daylight savings time if these changes are not observed in the particular area that the person lives. These radio controlled clocks are quite convenient in that the clocks automatically set themselves based on the broadcast timing signal, even though time zone and daylight saving time adjustment is sometimes required.
However, many of these radio controlled clock receivers have a disadvantage. The disadvantage is that the reception of the timing signal is often subject to interference. The interference may be caused by the location of the clock within a home or building, or by atmospheric influence. The major influences in a normal household or office environment are curtains in aluminum, electrical appliances which are not earthed, computers, televisions, and buildings reinforced with concrete or with a metallic front.
For the foregoing reasons, there is a need for a radio controlled clock that overcomes some of the reception problems associated with existing radio controlled clocks.
DISCLOSURE OF INVENTION
It is therefore an object of the present invention to provide a radio system, including a central radio device configured to receive the timing signal and send the timing information to any number of appliances having clocks.
In carrying out the above object and other objects and features of the present invention, a radio system for use in a building having a power distribution system including electrical wire carrying a building power signal is provided. The building is within a range of an over-the-air radio broadcast timing signal that indicates a reference time. The system comprises a central radio device and a plurality of appliances. The central radio device is located at the building and has a radio receiver configured to receive the timing signal. The central radio device produces an output signal based on the timing signal and is in communication with the building power distribution system wiring. The output signal is modulated onto the building power signal. Each appliance has a clock. Further, each appliance has a power connector that connects to the building power distribution system wiring. Each appliance has a decoder that decodes the modulated power signal to determine the central radio device output signal. Each appliance sets the clock based on the central radio device output signal. Alternatively, the central radio device output signal may be sent to the appliances over a wireless link or other type of link, although power line communication is preferred.
Preferably, the timing signal has a carrier frequency of between 50 kHz and 100 kHz. More preferably, the carrier frequency is about 60 kHz. Further, the timing signal preferably indicates the reference time as coordinated universal time.
In a preferred embodiment, the central radio device output signal indicates a shifted time that is shifted relative to the reference time based on a time zone of the central radio device. The central radio device further comprises a time zone selection mechanism that is operable by a user to select the time zone of the central radio device. The output signal is based on the timing signal and on the selected time zone. More preferably, the central radio device further comprises a daylight savings time selection mechanism that is operable by a user to select the status of daylight savings time of the central radio device; that is, select whether or not daylight savings time is to be observed. The output signal is based on the timing signal, the selected time zone and the status of daylight savings time. In preferred embodiments, the building power distribution system is an alternating current system and the central radio device modulates the output signal onto the alternating current system.
Further, in carrying out the present invention, a radio system for use in a building having a power distribution system including electrical wiring carrying a building power signal is provided. The building is within a range of an over-the-air radio broadcast timing signal that indicates a reference time. Further, the building is within a range of a weather radio signal. The system comprises a central radio device and a plurality of appliances. The central radio device is located at the building and has a radio receiver configured to receive the timing signal and the weather radio signal. The central radio device produces an output signal based on the timing signal and the weather radio signal. The central radio device is in communication with the building power distribution system wiring so as to modulate the output signal onto the building power signal. Each appliance has a clock, has a power connector that connects to the building power distribution system wiring, and has a decoder. The decoder decodes the modulated power signal to determine the central radio device output signal. The appliance sets the clock based on the central radio device output signal. Each appliance further includes an indicator that indicates a status of the weather radio signal. Preferably, each appliance further includes an amplifier circuit that amplifies the weather radio signal, and a driven speaker to allow a user to listen to the weather radio signal.
Preferably, the indicator that indicates the status of the weather radio signal is an alarm. More preferably, the weather radio signal preferably has a carrier frequency of between 162 MHz and 163 MHz. More preferably, the weather radio signal uses specific area message encoding (SAME). In a preferred implementation, the timing signal has a carrier frequency of between 50 kHz and 100 kHz. More preferably, the building power distribution system is an alternating current system and the central radio device modulates the output signal onto the alternating current system.
In preferred embodiments of the present invention, the system further comprises an outdoor temperature sensor having an output in communication with the central radio device. The central radio device output signal is further based on the temperature sensor output so as to indicate an outdoor temperature. Each appliance further includes a temperature indicator that indicates the outdoor temperature. Further, in preferred embodiments of the present invention, the system further comprises an outdoor humidity sensor. The humidity sensor has an output in communication with the central radio device. The central radio device output signal is further based on the humidity sensor output so as to indicate an outdoor humidity. Each appliance further includes a humidity indicator that indicates the outdoor humidity. In an alternative implementation, the system further includes a barometric pressure sensor having an output in communication with the central radio device. In turn, the central radio device output signal is further based on the barometric pressure sensor output, with each appliance including a barometric pressure indicator.
Even further, and
Lei Luiz
Wong Chi Biu
Brooks & Kushman P.C.
Dang Hung Q
Litech Electronic Products Limited
LandOfFree
Central radio device and associated appliance does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Central radio device and associated appliance, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Central radio device and associated appliance will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3321766