Centerline protection using heavy inert gases

Glass manufacturing – Processes of manufacturing fibers – filaments – or preforms – Process of manufacturing optical fibers – waveguides – or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C065S399000, C065S416000, C065S421000, C065S424000, C065S426000, C065S900000

Reexamination Certificate

active

06266980

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to consolidated glass preforms, and methods for fabricating preforms, core cane and optical fiber, and more particularly to a method of minimizing re-wetting of a preform following consolidation thereof.
BACKGROUND OF THE INVENTION
Processing of consolidated high-purity glass preforms into core cane (otherwise referred to as a blank) is well known in the art. A glass soot, which may include suitable doping, is deposited, for example, by a flame hydrolysis process upon a rotating substrate such as an alumina mandrel. Various methods of flame hydrolysis are described in U.S. Pat. Nos. 3,737,292, 3,823,995 and 3,884,550. The core portion of the soot preform is formed by introducing various gasses in predetermined amounts into a burner flame. This introduction produces oxides that include, for example silicon oxide and germanium oxide. These oxides deposit on the rotating mandrel until the appropriate diameter of the core portion is reached. The oxides may be introduced in various percentages, as desired, to produce various core refractive index profiles as described, for example, in U.S. Pat. No. 3,823,995. The core portion, once formed, is then generally overclad with SiO
2
until a final soot preform diameter is reached. As is well understood, the overclad portion, once consolidated, exhibits a refractive index lower than that of the core. Alternately, the refractive index differences may be achieved by down dope cladding.
Upon completion of the flame hydrolysis process, preferably by an Outside Vapor Deposition (OVD) process, the mandrel with deposited soot is removed from the OVD lathe. Typically, a handle portion is included on the preform and is integral therewith. The mandrel is then removed from the preform thereby leaving a soot preform having an aperture extending along its axial length and positioned at the preform's centerline. The aperture then has a silica plug-like member inserted at its lower end. Subsequently, the preform is inserted into and held in a consolidation furnace. First, chlorine gas is included within the muffle portion of the furnace to aid in water removal from the preform. In particular, chlorine permeates the interstices of the soot preform and flushes out any OH, H
2
or H
2
O contained therein. The preform is then heated at a high temperature (generally in the range of between about 1450° C. to about 1600° C., depending upon preform composition) until the deposited soot consolidates and transforms into a solid, high-purity glass having superior optical properties. Typically, the preform is subjected to gradient consolidation, a technique taught in U.S. Pat. No. 3,933,454 whereby the bottom tip is consolidated first; the consolidation continuing up the preform until completed. It should be recognized that during consolidation, the silica plug-like member combines with and completely seals the lower end of the preform.
As is known to those of ordinary skill in the art, any OH, H
2
or H
2
O included in the consolidated preform or the intermediate core cane may degrade the optical properties of the resultant optical fiber produced therefrom. Reductions of even small amounts of retained OH, H
2
or H
2
O can have substantial benefits in terms of dB/km losses (attenuation) in the resulting optical fiber produced. OH, H
2
or H
2
O content along the centerline aperture is particularly problematic because, for example, in most optical fibers, the maximum field strength of the optical signal occurs at or near the centerline. Therefore, reductions of OH, H
2
or H
2
O present in the preform results in reduced system cost to the end optical fiber user because optical componentry, such as regenerators, amplifiers and the like can be spaced further apart. Therefore, removal of OH, H
2
or H
2
O is a significant problem in optical fibers.
Once the preform is consolidated, it is removed from the furnace and transferred to an argon-filled holding vessel. Next, the preform is drawn, under a vacuum, to close the centerline aperture and stretch the preform into a core cane of constant diameter as is known to those of skill in the art. The core cane is then cut into segments, each of which is then again overclad with SiO
2
soot to an appropriate diameter and again consolidated thereby resulting in a preform which is apertureless. The resulting preform is then transferred to a drawing furnace to draw the optical fiber.
One of the problems encountered during the removal of the preform from the core consolidation furnace is re-wetting of the centerline portion, i.e., the aperture. “Re-wetting” as referred to herein means that OH, H
2
or H
2
O is re-dispersed, diffused, or otherwise deposited on or into the consolidated glass. The mechanism of re-wetting is accomplished as the preform is removed from the furnace. Air replaces the gas present in the aperture due to buoyancy and temperature gradient effects. Because of the humidity present in the air, OH, H
2
or H
2
O re-disperse, diffuse, or otherwise deposit on or into the consolidated preform, and most problematically at its centerline. In particular considerable effort has been spent on methods of reducing re-wetting in glass preforms as any resulting improvement in attenuation translates into lower system cost to the end-user. These efforts, although successful, have resulted in additional steps and expense.
Thus, there is a need for a simple and cost-effective method that reduces the amount of re-wetting of the consolidated preform subsequent to consolidation.
SUMMARY OF THE INVENTION
In accordance with the invention, an improved method is provided for manufacturing a consolidated preform. The method in accordance with the invention minimizes re-wetting of a consolidated preform. More particularly, the method minimizes re-wetting of a centerline aperture in the preform subsequent to consolidation, for example, upon removal from the consolidation furnace. The method has utility for minimizing re-wetting of the preform thereby enabling production of higher quality, lower attenuation optical fibers.
In accordance with another aspect of the invention, a method of manufacturing a consolidated preform is provided comprising a step of continuously exposing a centerline aperture of a consolidated preform to a heavy inert gas between removal from the consolidation furnace and during transfer to another vessel (e.g., a holding vessel) to minimize re-wetting of the centerline aperture. Most preferably, the heavy inert gas is Argon, Krypton or Xenon. The heavy inert gas is most preferably retained within the centerline aperture up until the point at which the aperture is closed.
Advantageously, the heavy inert gas may be first introduced during a finishing phase in the consolidation furnace. Upon removal from the furnace, the preform is held in an upright orientation such that the heavy inert gas remains in the centerline aperture. Next, the consolidated preform may be transferred to a holding vessel also comprising a heavy inert gas. Thus, because the aperture is filled with the heavy inert gas whilst being transferred from the furnace to the holding vessel, re-wetting of the centerline aperture is minimized as the heavy inert gas acts as a shield preventing air infiltration.
From the holding vessel, the consolidated preform may be utilized to produce a core cane whereupon the centerline aperture is closed, under a vacuum, during the step of drawing the core cane. The resulting core cane segments are again overclad, and again consolidated to produce a second consolidated preform. From this second preform, an optical fiber may be drawn.
In a more detailed aspect of the invention, a method of manufacturing an optical fiber preform is provided comprising a soot preform including a centerline aperture including a plug member at a lower end thereof, consolidating the soot preform in a furnace, subjecting the preform to a heavy inert gas to purge any other gas present in the centerline aperture, and removing the preform whilst continuing to expose the centerli

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Centerline protection using heavy inert gases does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Centerline protection using heavy inert gases, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Centerline protection using heavy inert gases will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2442331

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.