Cement expansion/contraction test apparatus

Measuring and testing – Volumetric content measuring

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S429000, C073S865600, C073S866000

Reexamination Certificate

active

06817238

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to an apparatus and method for use in the measurement of fluids used in the field of oil and gas recovery. More particularly, this invention relates to an apparatus such as a mold adapted to detect the expansion or shrinkage of cement as the cement is exposed to simulated down-hole conditions, such as high-pressure, high-temperature applications. A method for measuring the expansion or shrinkage of the cement is also disclosed.
2. Description of the Related Art
It is a fact that cement will undergo chemical shrinkage when it sets. The chemical shrinkage—or the hydration volume reduction (HVR)—of a cement slurry is a direct result of water chemically reacting with the cement clinker crystalline materials forming calcium silicate crystals. The chemical shrinkage of the slurry can be substantial, e.g. seven percent of its original volume, depending on the slurry formulation. The matrix volume change of the cement slurry can lead to poor cement bonding or to the creation of micro-annuli. These micro-channels or poorly bonded areas may allow well fluids like gas, oil, steam, water, and/or the combination of fluids to migrate to the surface or to other zones of the well. The migration of well fluids will result in lower production revenue. Additionally, the migration of well fluids can increase well maintenance costs, increase casing corrosion, and reduce the life of the well. The formation of micro-annuli may require a secondary cement job or squeeze cementing, thus increasing the total well cost. The migration of well fluids can also lead to complete loss of the well due to blowout. In injection wells, the poor cement bonding can lead to a higher injection cost and lower well efficiency. These well fluids can migrate, contaminate, and pollute fresh water aquifers.
It is uncommon for oil and gas well service companies to evaluate, test or measure this important cement property. This is due primarily to a lack of the appropriate efficient and accurate equipment to continuously measure the cement shrinkage or expansion while it is curing under humid environment and under down-hole temperature and pressure.
Few methods and ideas have been tested to accurately measure volume change of cement slurry. M. E. Chenevert and B. K. Shrestha from the University of Texas have written a SPE paper on the Chemical Shrinkage Properties of Oilfield Cement. The apparatus used in the experiment consists of a high-pressure cell, a high-pressure injection pump with pressure transducer and digital gauge, a heating jacket, a vacuum pump, autoclave high-pressure tubing and valves, and an electronic thermostat with a sensing thermocouple. For each test, a thin-walled lead tube with a 1.375-inch diameter by 4 inches long is used. The lead tubes containing the slurry is capped and placed inside the high-pressure cell and inside the heating jacket. The high-pressure injection pump is used to inject mineral oil around the test sample and to the control pressure during the test. The desired heat is applied to the test sample with the heating jacket and controlled with the thermostat.
The volumetric property of the slurry is measured directly by the volume of mineral oil injected. Therefore, it is necessary to calibrate the pump and establish the relationship between the volume of oil injected to the positive-displacement pump read-out. During a test, if the temperature of the test cell changes then the pressure will change too. The behavior is due to the thermal expansion or contraction of the mineral oil. Depending on the temperature change, the pressure regulator will activate the pump by removing or adding mineral oil to the system. These can indicate a false reading of cement volumetric changes. Therefore, it is necessary to establish a mineral oil thermal expansion coefficient for each test temperature. The mineral oil correction factor will be used in slurry volumetric calculations.
Other authors, Reza Ghofrani and Heiko Plack, wrote SPE/IADC 25697 (“CaO-and/or MgO-Swelling Cements: A Key for Providing a Better Annular Sealing?”). In their experiment, they use a different apparatus to measure the matrix volume change in cement slurry. The apparatus consists of a test cell, a gear mechanism, a floating piston, potentiometer, autoclave and chart recorder. The test cell is divided into three-sections: 1) a water reservoir; 2) a sample chamber; and 3) a measuring head. A sintered metal disk and a filter paper are mounted at the bottom of the cement sample. Below the metal disk is a cavity filled with water. A metal plug with sealed assembly is used to cap the bottom of the water chamber. The autoclave curing pressure is transmitted to the cement during the test by the way of the metal plug to the water and to the cement. This will allow the cement to absorb additional water as required during the hydration process. On the top of the cement sample is a rubber cup sleeve that seals the cement against the pressurizing fluid (mineral oil). A floating piston is installed on top of the rubber cup sleeve. The axial motion of the piston caused by the changes in the matrix volume is converted to a rotational motion by a gear mechanism. The gear mechanism will alter the position of the pointer across the potentiometer resistor. The shifting position of the pointer across the resistor provides a variation of the voltage signal. The measured voltages along with the autoclave-temperature and pressure are monitored continuously by means of a chart recorder. The matrix volume change is calculated using the calibration chart. The calibration chart is expressed as piston height versus voltage signal reading.
One advantage of the Ghofrani/Plack apparatus is that fresh water is pushed into the cement matrix while curing. The test data from the apparatus can be subjective due to the measuring head design. The rubber cup sleeve that seals the cement against the mineral oil can absorb some of the displacement movement or it can swell to provide a positive movement for the piston. The mechanical tolerances on the gear mechanism can affect equipment performance from one unit to the other. The volumetric change in some slurries may be in the micro-inches spectrum and converting it to axial motion by the piston, to a rotational movement by the gear mechanism, and to electrical signal by the potentiometer. The measuring head design may be impractical for field application accuracy may be sacrifice. Currently, none of these concepts has been built commercially to support the oil well industry.
SUMMARY OF THE INVENTION
An apparatus is described for measuring volumetric changes in cement as the cement is exposed to a given pressure and temperature in a high-pressure high-temperature chamber. In some embodiments, the apparatus has a first section adjacent a base and a second a second section movably attached to the first section, the second section adjacent the base. The first section, the second section, and the base may define a mold into which a measurable amount of cement may be placed. The apparatus may include a sensor that is functionally associated with at least one of the sections. The sensor may be adapted to measure the movement of the first and second sections relative to one another in response to volumetric changes in the cement when the cement is exposed to simulated down-hole pressures and temperatures. The apparatus may include a seal between the first and second sections, in some embodiments.
In some embodiments, the apparatus includes a fastening assembly, which may comprise a first bolt surrounded by a first spring and having a threaded end, the first bolt passing through a first hole in the second section and threadedly engaged with a first threaded hole in the first section, and a second bolt surrounded by a second spring and having a threaded end, the second bolt passing through a second hole in the second section and threadedly engaged with a second threaded hole in the first section, the springs adapted to bias the second section into

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cement expansion/contraction test apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cement expansion/contraction test apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cement expansion/contraction test apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3321631

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.