Cell thickness detection method, cell thickness control...

Optics: measuring and testing – Dimension – Thickness

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S369000, C356S632000, C349S192000

Reexamination Certificate

active

06618156

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field of the Invention
The present invention relates to a cell thickness detection method for detecting a cell thickness of a liquid crystal panel, a cell thickness control system, and a manufacturing method for a liquid crystal device.
2. Description of the Related Art
Conventionally, liquid crystal displays include liquid crystal display panels constructed by laminating two substrates with a sealing member therebetween and injecting a liquid crystal into a space surrounded by the sealing member. In such liquid crystal display panels, a gap between the two substrates, which will be referred to as “cell thickness” in the following description, is an important parameter that determines the thickness of a liquid crystal layer. Optical characteristics of the liquid crystal display panels are determined by the cell thicknesses thereof.
Normally, in a manufacturing process of a liquid crystal display device, two substrates are laminated with an uncured sealing member therebetween, and then the laminate is compressed with a predetermined pressure so that the substrates are bonded to each other. In this process, spherical or columnar spacers are mixed in the sealing member or spread over one of the substrates before laminating the other one thereon, so that the cell thickness is limited by the outside size of the spacers. The sealing member is then cured in this state by a heating process, etc., and a cell structure, that is, an empty cell, of the liquid crystal display panel is formed.
The above-described sealing member is provided with an opening which serves as an inlet for a liquid crystal, and the liquid crystal is injected into the above-described empty cell through this inlet. When the liquid crystal is injected, the liquid crystal display panel slightly deforms to swell outwards. Thus, during a sealing process of the liquid crystal in which a sealing material is applied to the inlet for the liquid crystal and is cured by applying ultraviolet rays, etc., the liquid crystal display panel should be compressed and the cell thickness is made uniform. When the liquid crystal is sealed as described above, the shape of the liquid crystal display panel at the sealing process is maintained, and the cell thickness can be made uniform over the entire display region.
Accordingly, the resulting cell thickness and the cell thickness distribution of the liquid crystal display panel are determined by the cell thickness thereof during the sealing process of the liquid crystal. Thus, conventionally, in the sealing process of the liquid crystal, the cell thickness is measured while the liquid crystal display panel is compressed, and the liquid crystal is sealed when the cell thickness becomes a desired value. With respect to measuring methods of the cell thickness, such a method is known in which light is emitted from a light source and interference of reflected light from the substrate surfaces, etc., is used for determining the cell thickness (a method using an optical thickness gauge which utilizes light interference). In addition, another method is also known in which a pair of polarizers are disposed in the front and rear of the liquid crystal display panel, and the hue of light transmitted through the liquid crystal display panel and the polarizers is used for determining the cell thickness.
However, the method in which the cell thickness is determined by utilizing the interference of the reflected light has the following problem. Since multiple layers such as a transparent electrode, an insulating film, an alignment film, a color filter, etc., are included in the liquid crystal display panel, the reflected light, which is generated at interfaces of the layers, causes interference, and the interference thereof becomes complex. In addition, the intensity of the reflected light is considerably small, so that it is difficult to determine the cell thickness with high accuracy.
In addition, there is also a problem in the method in which the cell thickness is determined by obtaining the hue of light transmitted through the liquid crystal display panel and the polarizers disposed in the front and rear of the liquid crystal display panel. When the cell thickness of a color liquid crystal display panel including a color filter is determined, the detected cell thickness is affected by the hue of the color filter. Thus, the detection of the cell thickness may not be possible due to the color filter. In addition, even if the detected value is corrected in consideration of the hue of the color filter, the cell thickness cannot be detected with sufficient accuracy.
Accordingly, an object of the present invention is to provide a new cell thickness detection method which is free from the above-described problems, and with which the cell thickness of a liquid crystal panel is detected with high accuracy without being affected by the existence of a color filter. In addition, it is also an object of the present invention to form a cell structure with high accuracy by using the new cell thickness detection method to provide a high quality liquid crystal device.
SUMMARY OF THE INVENTION
According to the present invention, a cell thickness detection method for detecting a cell thickness of a liquid crystal panel which is constructed by laminating two substrates and disposing a liquid crystal layer between the substrates includes the steps of setting a light path for transmitting light through a first polarizing means, the liquid crystal layer, and a second polarizing means, in that order; obtaining a spectrum of light which is transmitted along the light path; deriving a detection value which is a wavelength, a frequency, or other value related to the wavelength or the frequency at which the spectrum has a minimum or maximum value; and determining the cell thickness based on the detection value.
Accordingly, the spectrum of light which is transmitted through the first polarizing means, the liquid crystal layer, and the second polarizing means, in that order, is obtained. This spectrum includes the minimum or maximum value at a wavelength or frequency position that is determined by a relative angle &phgr; between the polarization transmission axes of the first and second polarizing means, an optical anisotropy &Dgr;n and a twist angle &thgr; of the liquid crystal, and the cell thickness d. When the relative angle &phgr; is set to a predetermined value, the wavelength or the frequency, at which the spectrum has the minimum or maximum value, vary with the cell thickness d without being affected by the hue generated by a color filter included in the liquid crystal panel, etc. Accordingly, by obtaining the wavelength, the frequency, or other value related to the wavelength or the frequency as the detection value, the cell thickness d can be determined with high accuracy without being affected by the interference of reflected light, the color tone of the color filter, etc.
Preferably, the wavelength or the frequency, at which the spectrum has the minimum or maximum value, is in the visible light region. When the detection value is in the visible light region, the measurement becomes easier, and the cell thickness d can be detected with higher accuracy.
In addition, preferably, a light source of light which is transmitted along the light path has an emission spectrum which is continuous in at least a wavelength region corresponding to the detection value. When a light source having an emission spectrum which is continuous at a wavelength region corresponding to the detection value is used, the influence of the emission spectrum on the detection value can be reduced, and the cell thickness can be detected with higher accuracy. Halogen lamps are an example of such a light source that has an emission spectrum which is continuous in the visible light region, and fluorescent tubes are an example of such a light source that has an emission spectrum which is not continuous in the visible light region.
According to another aspect of the present invention, a cell thickness control syst

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cell thickness detection method, cell thickness control... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cell thickness detection method, cell thickness control..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cell thickness detection method, cell thickness control... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3078120

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.