Cell potential measuring electrode and measuring apparatus...

Chemical apparatus and process disinfecting – deodorizing – preser – Analyzer – structured indicator – or manipulative laboratory... – Means for analyzing liquid or solid sample

Reissue Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C204S403010, C204S403130, C204S412000

Reissue Patent

active

RE037977

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a low impedance cell potential measuring electrode assembly typically having a number of microelectrodes on an insulating substrate and having a wall enclosing the region including the microelectrodes. The device is capable of measuring electrophysiological activities of a monitored sample using the microelectrodes while cultivating those cells or tissues in the in the region of the microelectrodes. The invention utilizes independent reference electrodes to lower the impedance of the overall system and to therefore lower the noise often inherent in the measured data. Optimally the microelectrodes are enclosed by a physical wall used for controlling the atmosphere around the monitored sample.
BACKGROUND OF THE INVENTION
Cell potential measuring apparatus have been developed to measure the activity or electrical potential generated by activity of nerve cells, other cells, or tissues (for example, Japanese Kokai 8-62209) without inserting glass electrodes or the like into the cells.
Measurement of cell potential by inserting a glass electrode or the like into the cell may damage that cell. Long term measurement of cell potential is quite difficult. It is further difficult to measure plural positions simultaneously; there is a limit to the number of electrodes one can place in a measurement electrode array and it is similarly difficult to adequately determine the position of the sample over measurement electrodes. In contrast, use of a cell potential measuring electrode having plural microelectrodes on a substrate (having a wall for enclosing a region including the microelectrodes), allows cultivation of the cells within the region enclosed by the wall and the simultaneous measurement of the potential of plural positions without damaging those cells.
These cell potential measuring devices measures cell potential against a reference. One such way is discussed with regard to Kokai 8-62209. When 64 microelectrodes are arranged in eight columns and eight rows, theoretically, by using one microelectrode as the reference potential (that is, as a common reference electrode connected to the potential of the culture medium) the cell potential of the other 63 positions can be measured simultaneously by using the remaining 63 microelectrodes.
However, when measuring very low level or micro-potentials such as cell potentials, noise is a problem. Noise level varies significantly depending on the selection of the type and location of the reference electrode. As mentioned above, when using one microelectrode as a reference electrode, simultaneous measurement of potential at 63 positions by using the remaining 63 microelectrodes is impossible because of the high noise level. When the reference electrodes and measuring electrodes correspond one-by-one to each other, the potential may be measured at a very low noise level state; But if 64 microelectrodes are used, for example, corresponding to 32 reference electrodes and 32 measuring electrodes, only 32 positions can be measured simultaneously.
In theory, though, one must limit the number of reference electrodes in order to simultaneously measure the potential at as many positions as possible.
As shown in
FIG. 12
, eight microelectrodes in one row are used as reference electrodes and seven measuring electrodes each are correlated to each of the reference electrodes, so that the potential can be measured simultaneously at 7×8=56 positions. If 56 microelectrodes are used as measuring electrodes, i.e., by using eight microelectrodes in one row as reference electrodes, the loss of measuring sites is about 12% as compared with the case of using all 64 or 63 pieces as measuring electrodes. However, even when seven measuring electrodes are used with one reference electrode, the noise is still quite large. It is quite difficult to detect a small change in cell potential from the noise.
Moreover, as shown in
FIG. 12
, when placing a segment S of cell or tissue on the plural microelectrodes, the segment S should not be placed on the row of microelectrodes used as reference electrodes. Such a placement requires skill and is difficult because the segment S must be held by tweezers and moved while observing the segment through a microscope. It is extremely difficult to place the segment S so that the eight microelectrodes in one row are completely exposed, while the remaining 56 microelectrodes be completely covered with the segment. If the segment S is placed to completely expose the eight microelectrodes in one row, usually some of the remaining 56 are exposed, and hence the number of positions for simultaneous measurement is decreased.
SUMMARY OF THE INVENTION
The invention is intended to solve such problems. This invention provides a cell potential measuring electrode less susceptible to noise and is yet capable of simultaneously measuring the potential at many positions by effectively utilizing all of the available microelectrodes if the positioning is not very precise when placing the segment of cell or tissue to be measured.
The cell potential measuring electrode of the invention preferably includes plural microelectrodes on an insulating substrate, a conductive pattern for connecting the microelectrodes to some region out of the microelectrode are, electric contacts connected to the end of the conductive pattern, an insulating film covering the surface of the conductive pattern, and a wall enclosing the region including the microelectrodes on the surface of the insulating film. The inventive reference electrodes have a comparatively lower impedance than the impedance of the measuring microelectrodes. They are respectively placed at plural positions in the region enclosed by the wall and often at a specific distance from the microelectrodes. The electrical contacts are further usually connected between the conductive pattern for wiring of each reference electrode and the end of the conductive pattern. The surface of the conductive pattern for wiring of the reference electrodes is typically covered with an insulating film.
According to this invention, since exclusive reference electrodes are provided at plural positions distant from the region of plural measurement microelectrodes, it is easy to place the segment of cell sample to cover all microelectrodes while not contacting with the reference electrodes. The reference electrode would typically have, for example, a larger area than a measurement microelectrodes and hence is smaller in impedance. Therefore the noise level is small even if connected to plural reference potentials for measuring positions. Therefore, common reference electrodes can be used with multiple measurement microelectrodes. Moreover, since each one of the plural reference electrodes is responsible for multiple measurement microelectrodes, the cell potentials may be easily measured simultaneously using all of microelectrodes.
Preferably, the plural reference electrodes are placed at nearly equal distances from the plural microelectrode region and at intervals of nearly equal angle. By “intervals of nearly equal angle”, we mean that when the plural microelectrode region is viewed from above, the plural reference electrodes extend away from that region in equi-angular rays. More preferably, the plural microelectrodes are placed in a rectangular matrix, and four of the reference electrodes are provided on an extension of diagonals of the region holding that rectangular matrix. In such a symmetrical placement, the noise level to each microelectrode is averaged.
As a specific example, the microelectrodes are situated in a matrix arrangement in a rectangle having sides of, e.g., 0.8 to 2.2 mm (in the case of 450 &mgr;m microelectrode pitch) or 0.8 to 3.3 mm (in the case of 300 &mgr;m microelectrode pitch). Four reference electrodes are situated at four corners of a rectangle of 5 to 15 mm on one side. More preferably, 64 microelectrodes are disposed in eight rows and eight columns at central pitches of about 100 to 450 &mgr;m, preferably 100 to 300 &mgr;m.
In order to set the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cell potential measuring electrode and measuring apparatus... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cell potential measuring electrode and measuring apparatus..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cell potential measuring electrode and measuring apparatus... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3146141

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.