Ceiling mounted heating device and method therefor

Electric resistance heating devices – Heating devices – Convection space heater

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C416S005000

Reexamination Certificate

active

06751406

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an apparatus, system and method for heating a room, and more specifically to a ceiling mounted heating device that creates a primary heated airflow preferably via an impeller that moves air from an upward location in a room and thereafter across heating elements. The ceiling mounted heating device is preferably adapted to an upward location and is designed to work in an integrated fashion with a ceiling fan, wherein operation of the ceiling fan will create a secondary airflow for distributing the primary heated airflow throughout a room.
2. Description of Related Art
Prior art systems for heating dwellings and offices were primarily by use of radiators having heated water flowing therethrough. Such heating was essentially practical only in buildings wherein a common boiler for heating water was practical. Dispersion of heat from the radiators was primarily a function of convective airflow that unfortunately left vestigial cold and hot spots within the room. Moreover, use of such radiators typically imposed a constraint on furniture arrangement and caused related impediments.
In many private dwellings and offices, forced air systems are currently utilized, as they are relatively inexpensive to install. However, in view of heat loss through ductwork and the size of the heating unit necessary to bring sufficient heat to a multitude of respective rooms, such forced air systems are usually quite expensive to operate. Furthermore, duct outlets, whether wall, floor or ceiling mounted, tend to constrict furniture arrangement as well, often producing hot and cold spots within a room. Moreover, electrically operated baseboard heaters typically rely upon convection for dispersion of heated air, resulting in inadequate heat distribution, production of hot and cold spots, and constraint of furniture placement and activities within a room.
Ceiling fans having heaters suspended therefrom have also been attempted. These heaters usually include a fan or the like for directing air heated by an electric heating element into the path of airflow produced by the ceiling fan. The downward direction of airflow produced by the ceiling fan results in the creation of a hot spot beneath the ceiling fan and a significant temperature gradient from the center of a room to its perimeter. The resulting hot and cold spots are generally uncomfortable and unacceptable as furniture placement limitations are imposed.
Ceiling fans drawing heated air upwardly from a below mounted heater are also known. However, such ceiling fans are of little practical value since the fan motor tends to overheat and self-destruct relatively quickly. Another major factor contributing to the loss of efficiency has been the previous inability of ceiling fans to comfortably remove trapped warm air from the ceiling. As such, in addition to the small temperature gradient within the room, the occupant is quickly subjected to uncomfortable drafts from a ceiling fan alone. In addition to the failure of previous heating units to properly mix the required upward movement of air from the ceiling fan with an additional heated air source, cool airflow from off the blades of a stand-alone ceiling fan is typically greater than the warm air it pushes off the ceiling, thus leaving the occupant feeling uncomfortable.
More specifically, examples of ceiling fans having heaters suspended therefrom may be found by reference to U.S. Pat. No. 4,508,958 to Kan et al., U.S. Pat. No. 5,668,920 to Pelonis, U.S. Pat. No. 5,887,785 to Yilmaz and U.S. Pat. No. 4,694,142 to Glucksman. However, in light of the present invention, the aforementioned designs are deficient in that they either fail to evenly distribute heated air throughout the room and thus result in cold spots and hot spots, or they fail to protect the fan motors from adverse heat generated from improperly isolated heating elements and/or deficient airflow design.
For instance, Kan et al. discloses a ceiling fan with adjacently mounted heating elements on the primary fan motor. Such proximity of the heating elements usually results in the adverse overheating of the fan motor and its consequential destruction. The Kan et al. patent fails to employ a heat sink barrier and therefore subjects the rotor and stator of the primary fan motor to nonisolated heat conditions. Further, the Kan et al. design and positioning of the secondary fan blades from the rotor hinders adequate air supply, thus yielding poor distribution of heated air and unwanted cold spots and hot spots throughout the room.
The Pelonis and Yilmaz patents disclose ceiling fans containing both a ceiling fan motor and a heater fan motor. However, due to the design of the Pelonis and Yilmaz inventions, both inventions fail to ensure isolation of the heating elements from the fan motors, thereby causing the subsequent overheating and malfunction of the same. Further, the design of the Pelonis invention essentially amounts to the fan motor blowing heated air in a directly downward fashion instead of an ideal circulating fashion, leaving unwanted cold spots throughout the room.
The Glucksman patent discloses an axial fan in coaxial alignment with an electric resistance heater. The Glucksman invention possesses not only the main elements of a space heater, but also the inadequacies and inefficiencies associated therewith. More specifically, the Glucksman design fails to uniformly distribute its produced heated air throughout a room. Therefore, the inherent deficiency therefore in the Glucksman design yields intense and uncomfortable hot air adjacent to the space heater and uncomfortable and unwanted cold air/spots in areas removed from the space heater.
An additional deficiency in the above references is that many of the ceiling fan/heater devices fail to disclose an adequate means for obtaining and controlling a desired temperature at various elevations. More specifically, with prior systems, the temperature at a standard standing height can often be several degrees higher than at the floor level. Unfortunately, wall-mounted thermostats are often mounted at the standard standing height level and only accurately reflect the temperature at that level. As such, if the occupants are sitting on the floor or on a sofa, the wall-mounted thermostat does not reflect the desired temperature at that level. Moreover, manually operated controls typically require constant manual adjustments depending on the occupant's elevation.
Therefore, it is readily apparent that a new and improved ceiling mounted heating device is needed, wherein the device provides a means for having a ceiling fan attached thereto and further provides a consistent and adequate uniform distribution of heated air without subjecting the fan motors to adverse heat elevations, and wherein any desired temperature at any desired elevation may be easily obtained. It is, therefore, to the provision of such an improvement that the present invention is directed.
SUMMARY OF THE INVENTION
Briefly described, in a preferred embodiment, the present invention overcomes the above-mentioned disadvantages, and meets the recognized need for such a device by providing a highly efficient preferably ceiling mounted heating device designed to achieve desired heating and energy objectives by creating a powerful, heated airflow using as little energy as possible. The heating device is constructed in such a manner that allows it to integrate with a ceiling fan in either a load-bearing or non load-bearing configuration. Located preferably inside the heating device is preferably an impeller having a blade or blades thereon, heating elements and heat sink material for protecting proximate components from unacceptable heat transfer from the heating elements.
The heating device is designed to move air from an upward location, preferably adjacent the ceiling, by preferably energizing the impeller. Heat is then added to the moved air by the impeller urging the moved air through heating elements before exhausting the now primary heat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ceiling mounted heating device and method therefor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ceiling mounted heating device and method therefor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ceiling mounted heating device and method therefor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3366342

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.