Static structures (e.g. – buildings) – With exposed configuration having acoustical function
Reexamination Certificate
2000-12-12
2002-12-03
Callo, Laura A. (Department: 3635)
Static structures (e.g., buildings)
With exposed configuration having acoustical function
C052S145000, C052S506090, C052S794100, C181S290000, C181S292000
Reexamination Certificate
active
06487822
ABSTRACT:
FIELD AND BACKGROUND OF THE INVENTION
The invention relates to a ceiling element for a ceiling composed-of a plurality of ceiling elements, having a lower metal support, which has apertures separated by webs, and an active sound layer, such as a sound insulation layer or sound absorption layer accommodated in the metal support, the layer being in particular in the form of an open-pore foam, for example, a melamine resin foam, the active sound layer being bonded to the metal support.
A very wide variety of configurations of ceiling elements of this type are known. They are used in a ceiling-forming manner so as to provide a “suspended ceiling” in a building below an intermediate floor. The gap between intermediate floor and suspended ceiling can be used in advantageous manner for concealed routing of supply lines. The suspended ceiling generally also supports functional elements, such as lights, loudspeakers and sound insulation features. Reference should be made in this regard to DE 44 30 292 A1.
The active sound layer can be connected to the metal support by an adhesive layer, serving as a bonding agent, on the sound insulation layer or sound absorption layer. The conventional, detachable protective covering is generally also needed here. The corresponding complete installation is costly.
SUMMARY OF THE INVENTION
It is an object of the invention to provide a configuration which is structurally simple and is more favorable economically.
This object is first and foremost achieved in a ceiling element having the introductory-mentioned features wherein the adhesive is only applied to the web regions, and the bonding is only carried out on the inner surfaces of the web regions. The apertures in the metal support are kept free of adhesive. It is therefore not possible for any airborne particles to adhere here. The proportion of the surface area used for securing the metal support to the active sound layer can be strictly minimized, but nevertheless provides a good load-bearing bond. Even portions of adhesive spreading somewhat over the border of the webs or web regions are negligible; they do not constitute any significant reduction in the opening of the apertures. Said apertures are dimensioned in such a manner that an adhesive membrane does not arise. Provision is furthermore made for the bonding to be strengthened at web intersections. In the case of lattice-like network structures, these are the “intersecting points”. The latter generally turn out to be somewhat larger in terms of surface area. This results in correspondingly larger bonding surfaces for the adhesive. Whereas when a lower metal support is used, the active sound layer can only be seen within the framework of the apertures, a solution may also be resorted to the effect that an upper metal support is provided, and that the active sound layer is bonded thereto. The metal support is therefore situated more closely to the intermediate floor than the active sound layer which it carries on its lower side. As regards the bonding, the same advantages are present if the upper metal support has apertures separated by webs and the bonding is only carried out in the region of the webs. It is expedient for the upper and lower metal supports to consist of expanded metal. Under some circumstances, the expanded metal may have a different fine-meshed structure. A solution is even conceivable to the effect that two metal supports are used for one ceiling element. The procedure here is for the lower metal support and the upper metal support to be connected only by means of the active sound layer. The latter acts as a retaining bridge. Moreover, it is favorable for the lower metal support and the upper metal support also to have, in comparison with the extent of the surface, an angled border region running at an angle of 30 to 45° with respect to said surface extent. This gives a type of shell-like border. At the same time, appropriate deep-drawing increases the surface stability of the ceiling element. Provision is then made for the angled portion of the angled border region to run toward the active sound layer. It has proven favorable, both in terms of reinforcing and with regard to exact fitting of the ceiling element into a support structure, for the angled border region to merge at its border edge into a flattened portion. This lies parallel in space to the dominant, remaining surface extent. In order also to ensure the same insulation or absorption effect right to the periphery of the ceiling elements, it is further provided for the active sound layer to be carried through in a continuous manner into the angled border region. In order, even in the angled border region, to obtain a contour-corresponding profile for the active sound layer, it is furthermore proposed for the angled border region to be formed after the active sound layer is bonded to the metal support.
On a ceiling element for a ceiling composed of a plurality of ceiling elements, having a lower metal support, which has apertures separated by webs, and an active surface layer, such as a sound insulation layer or sound absorption layer, incorporated in the metal support, an advantageous configuration is obtained by means of an upper metal support. This produces a solution which is particularly suitable for load-supporting and can cover large surface areas. Provision is also made here for the upper metal support to have apertures separated by webs. A particularly stable solution is provided if the upper metal support is connected at its border to the lower metal support. A hinged or folding-box-like “cage” for the active sound layer may even be obtained if the connection is hinge-like at one border region and is positively-locking at the opposite side. Positive-locking goes as far as including in its meaning a latching connection. The advantage of this solution also resides in the possibility of fitting anew or refitting the layer of this ceiling element. If such a more elaborate implementation is not desired, it is also sufficient for the upper metal support and the lower metal support to be connected in a simple manner, for example in a material-combining manner. Welding, e.g. spot welding, is meant here. Even soldering may be used as a connecting means. With regard to the upper metal support, the special configuration which has already been explained may be selected by the upper metal support also consisting of expanded metal. The further configuration of the upper metal support having protruding fixing sections has proven advantageous in mounting terms with regard to the ceiling elements. Fixing sections of this type are formed integrally on opposite border regions. Attention is paid here to being able to release ceiling elements in a manner which does not affect the surrounding area, i.e. the other ceiling elements, in terms of position. In detail, measures of this type reside in the fact that one fixing section is formed in a vertical projection with the lower metal support. The lower metal support therefore conceals the retaining means from sight. Provision is furthermore made on the mutually opposite border regions for fixing sections to be formed in a vertical projection within, on the one hand, and outside, on the other hand, the lower metal support. Specifically, provision for this is made in such a manner that the offset dimension of the one fixing section corresponds to the projecting dimension of the other fixing section of the adjacent ceiling element. The measure that when there is a vertical projection within the lower metal support below the fixing sections, a lifting clearance for angling out a ceiling element from the ceiling is formed, has proven to facilitate the release of the ceiling element. The lifting clearance serving for the corresponding manoeuvering has adequate dimensions, if, in the vertical direction, it corresponds approximately to half the thickness dimension of an active sound layer. Finally, provision is also made for the fixing sections to be strengthened by being double-layered. In this case, there is a simple means to hand us
Gradinger Andreas
Haack Jörg
LandOfFree
Ceiling element for a composite ceiling does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ceiling element for a composite ceiling, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ceiling element for a composite ceiling will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2974237