CDNA for human methylenetetrahydrofolate reductase

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

435 912, 536 235, 536 2431, 536 2433, C12Q 168, C12P 1934, C07H 2104

Patent

active

060748214

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF THE INVENTION

(a) Field of the Invention
The invention relates to a cDNA probe for human methylenetetrahydrofolate reductase (MTHFR), and its uses.
(b) Description of Prior Art
Folic acid derivatives are coenzymes for several critical single-carbon transfer reactions, including reactions in the biosynthesis of purines, thymidylate and methionine. Methylenetetrahydrofolate reductase (MTHFR; EC 1.5.1.20) catalyzes the NADPH-linked reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-substrate for methylation of homocysteine to methionine. The porcine liver enzyme, a flavoprotein, has been purified to homogeneity; it is a homodimer of 77-kDa subunits. Partial proteolysis of the porcine peptide has revealed two spatially distinct domains: an N-terminal domain of 40 kDa and a C-terminal domain of 37 kDa. The latter domain contains the binding site for the allosteric regulator S-adenosylmethionine.
Hereditary deficiency of MTHFR, an autosomal recessive disorder, is the most common inborn error of folic acid metabolism. A block in the production of methyltetrahydrofolate leads to elevated homocysteine with low to normal levels of methionine. Patients with severe deficiencies of MTHFR (0-20% activity in fibroblasts) can have variable phenotypes. Developmental delay, mental retardation, motor and gait abnormalities, peripheral neuropathy, seizures and psychiatric disturbances have been reported in this group, although at least one patient with severe MTHFR deficiency was asymptomatic. Pathologic changes in the severe form include the vascular changes that have been found in other conditions with elevated homocysteine, as well as reduced neurotransmitter and methionine levels in the CNS. A milder deficiency of MTHFR (35-50% activity) has been described in patients with coronary artery disease (see below). Genetic heterogeneity is likely, considering the diverse clinical features, the variable levels of enzyme activity, and the differential heat inactivation profiles of the reductase in patients' cells.
Coronary artery disease (CAD) accounts for 25% of deaths of Canadians. Cardiovascular risk factors (male sex, family history, smoking, hypertension, dyslipoproteinemia and diabetes) account for approximately 60 to 70% of our ability to discriminate CAD patients from healthy subjects. Elevated plasma homocysteine has also been shown to be an independent risk factor for cardiovascular disease.
Homocysteine is a sulfhydryl-containing amino acid that is formed by the demethylation of methionine. It is normally metabolized to cysteine (transsulfuration) or re-methylated to methionine. Inborn errors of metabolism (as in severe MTHFR deficiency) causing extreme elevations of homocysteine in plasma, with homocystinuria, are associated with premature vascular disease and widespread arterial and venous thrombotic phenomena. Milder elevations of plasma homocysteine (as in mild MTHFR deficiency) have been associated with the development of peripheral vascular disease, cerebrovascular disease and premature CAD.
Homocysteine remethylation to methionine requires the folic acid intermediate, 5-methyltetrahydrofolate, which is produced from 5,10-methylenetetrahydrofolate folate through the action of 5,10-methylenetetrahydrofolate reductase (MTHFR). Deficiency of MTHFR results in an inability to metabolize homocysteine to methionine; elevated plasma homocysteine and decreased methionine are the metabolic consequences of the block. Severe deficiencies of MTHFR (less than 20% of activity of controls) as described above, are associated with early-onset neurologic symptoms (mental retardation, peripheral neuropathy, seizures, etc.) and with atherosclerotic changes and thromboembolism. Milder deficiencies of MTHFR (35-50% of activity of controls), with a thermolabile form of the enzyme, are seen in patients with cardiovascular disease without obvious neurologic abnormalities.
In a survey of 212 patients with proven coronary artery disease, the thermolabile form of MTHFR was found in 17% of the CAD gro

REFERENCES:
Goyette P et al., Nature Genetics, 1994, 7:195-200.
Goyette P et al., Am, J. Hum. Genet., 1995, 56:1052-1059.
Frosst P et al., Nature Genetics, 1995, 10:111-113.
Orita, M. et al., Genomics, 1989, 5:8874-8879.
Engbersen et al., Am. J. Hum. Genet., 1995, 56:142-150.
Stauffer et al. Molecular Gen Genetics. 212: 246-251, 1988.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

CDNA for human methylenetetrahydrofolate reductase does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with CDNA for human methylenetetrahydrofolate reductase, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and CDNA for human methylenetetrahydrofolate reductase will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2067430

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.