Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives
Reexamination Certificate
1997-10-23
2001-08-21
Chan, Christina Y. (Department: 1644)
Organic compounds -- part of the class 532-570 series
Organic compounds
Carbohydrates or derivatives
C536S023100
Reexamination Certificate
active
06277977
ABSTRACT:
FIELD OF INVENTION
This invention relates to newly identified polynucleotides, polypeptides encoded by them and to the use of such polynucleotides and polypeptides, and to their production. More particularly, the polynucleotides and polypeptides of the present invention relate to the G-protein coupled receptor family, hereinafter referred to as HAPOI67. The invention also relates to inhibiting or activating the action of such polynucleotides and polypeptides.
BACKGROUND OF THE INVENTION
It is well established that many medically significant biological processes are mediated by proteins participating in signal transduction pathways that involve G-proteins and/or second messengers, e.g., cAMP (Lefkowitz, Nature, 1991, 351:353-354). Herein these proteins are referred to as proteins participating in pathways with G-proteins or PPG proteins. Some examples of these proteins include the GPC receptors, such as those for adrenergic agents and dopamine (Kobilka, B. K., et al., Proc. Natl Acad. Sci., USA, 1987, 84:46-50; Kobilka, B. K., et al.,
Science
, 1987, 238:650-656; Bunzow, J. R., et al.,
Nature
, 1988, 336:783-787), G-proteins themselves, effector proteins, e.g., phospholipase C, adenyl cyclase, and phosphodiesterase, and actuator proteins, e.g., protein kinase A and protein kinase C (Simon, M. I., et al., Science, 1991, 252:802-8).
For example, in one form of signal transduction, the effect of hormone binding is activation of the enzyme, adenylate cyclase, inside the cell. Enzyme activation by hormones is dependent on the presence of the nucleotide, GTP. GTP also influences hormone binding. A G-protein connects the hormone receptor to adenylate cyclase. G-protein was shown to exchange GTP for bound GDP when activated by a hormone receptor. The GTP-carrying form then binds to activated adenylate cyclase. Hydrolysis of GTP to GDP, catalyzed by the G-protein itself, returns the G-protein to its basal, inactive form. Thus, the G-protein serves a dual role, as an intermediate that relays the signal from receptor to effector, and as a clock that controls the duration of the signal.
The membrane protein gene superfamily of G-protein coupled receptors has been characterized as having seven putative transmembrane domains. The domains are believed to represent transmembrane &agr;-helices connected by extracellular or cytoplasmic loops. G-protein coupled receptors include a wide range of biologically active receptors, such as hormone, viral, growth factor and neuroreceptors.
G-protein coupled receptors (otherwise known as 7TM receptors) have been characterized as including these seven conserved hydrophobic stretches of about 20 to 30 amino acids, connecting at least eight divergent hydrophilic loops. The G-protein family of coupled receptors includes dopamine receptors which bind to neuroleptic drugs used for treating psychotic and neurological disorders. Other examples of members of this family include, but are not limited to, calcitonin, adrenergic, endothelin, cAMP, adenosine, muscarinic, acetylcholine, scrotonin, histamine, thrombin, kinin, follicle stimulating hormone, opsins, endothelial differentiation gene-1, rhodopsins, odorant, and cytomegalovirus receptors.
Most G-protein coupled receptors have single conserved cysteine residues in each of the first two extracellular loops which form disulfide bonds that are believed to stabilize functional protein structures. The 7 transmembrane regions are designated as TM1, TM2, TM3, TM4, TM5, TM6, and TM7. TM3 has been implicated in signal transduction.
Phosphorylation and lipidation (palmitylation or farnesylation) of cysteine residues can influence signal transduction of some G-protein coupled receptors. Most G-protein coupled receptors contain potential phosphorylation sites within the third cytoplasmic loop and/or the carboxy terminus. For several G-protein coupled receptors, such as the &bgr;-adrenoreceptor, phosphorylation by protein kinase A and/or specific receptor kinases mediates receptor desensitization.
For some receptors, the ligand binding sites of G-protein coupled receptors are believed to comprise hydrophilic sockets formed by several G-protein coupled receptor transmembrane domains, said sockets being surrounded by hydrophobic residues of the G-protein coupled receptors. The hydrophilic side of each G-protein coupled receptor transmembrane helix is postulated to face inward and form a polar ligand binding site. TM3 has been implicated in several G-protein coupled receptors as having a ligand binding site, such as the TM3 aspartate residue. TM5 serines, a TM6 asparagine and TM6 or TM7 phenylalanines or tyrosines are also implicated in ligand binding.
G-protein coupled receptors can be intracellularly coupled by heterotrimeric G-proteins to various intracellular enzymes, ion channels and transporters (see, Johnson et al., Endoc. Rev., 1989, 10:317-331) Different G-protein &agr;-subunits preferentially stimulate particular effectors to modulate various biological functions in a cell. Phosphorylation of cytoplasmic residues of G-protein coupled receptors has been identified as an important mechanism for the regulation of G-protein coupling of some G-protein coupled receptors. G-protein coupled receptors are found in numerous sites within a mammalian host.
Over the past 15 years, nearly 350 therapeutic agents targeting 7 transmembrane (7 TM) receptors have been successfully introduced into the market.
This indicates that these receptors have an established, proven history as therapeutic targets. Clearly there is a need for identification and characterization of further receptors which can play a role in preventing, ameliorating or correcting dysfunctions or diseases, including, but not limited to, infections such as bacterial, fungal, protozoan and viral infections, particularly infections caused by HIV-1 or HIV-2; pain; cancers; anorexia; bulimia a; Parkinson's disease; acute heart failure; hypotension; hypertension; urinary retention; osteoporosis; angina pectoris; myocardial infarction; ulcers; asthma; allergies; benign prostatic hypertrophy; and psychotic and neurological disorders, including anxiety, schizophrenia, manic depression, delirium, dementia, severe mental retardation and dyskinesias, such as Huntington's disease or Gilles dela Tourett's syndrome.
SUMMARY OF THE INVENTION
In one aspect, the invention relates to HAPOI67 polypeptides and recombinant materials and methods for their production. Another aspect of the invention relates to methods for using such HAPOI67 polypeptides and polynucleotides. Such uses include the treatment of infections such as bacterial, fungal, protozoan and viral infections, particularly infections caused by HIV-1 or HIV-2; pain; cancers; anorexia; bulimia; asthma; Parkinson's disease; acute heart failure; hypotension; hypertension; urinary retention; osteoporosis; angina pectoris; myocardial infarction; ulcers; asthma; allergies; benign prostatic hypertrophy; and psychotic and neurological disorders, including anxiety, schizophrenia, manic depression, delirium, dementia, severe mental retardation and dyskinesias, such as Huntington's disease or Gilles dela Tourett's syndrome, among others. In still another aspect, the invention relates to methods to identify agonists and antagonists using the materials provided by the invention, and treating conditions associated with HAPOI67 imbalance with the identified compounds. Yet another aspect of the invention relates to diagnostic assays for detecting diseases associated with inappropriate HAPOI67 activity or levels.
DESCRIPTION OF THE INVENTION
Definitions
The following definitions are provided to facilitate understanding of certain terms used frequently herein. “HAPOI67” refers, among others, to a polypeptide comprising the amino acid sequence set forth in SEQ ID NO:2, or an allelic variant thereof.
“Receptor Activity” or “Biological Activity of the Receptor” refers to the metabolic or physiologic function of said HAPOI67 including similar activities or improved activities or these activities with decreased unde
Mao Joyce Yue
Sathe Ganesh Madhusudan
Chan Christina Y.
Hayes Robert C.
Hecht Elizabeth J.
King William T.
Ratner & Prestia
LandOfFree
cDNA clone HAPOI67 that encodes a human 7-transmembrane... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with cDNA clone HAPOI67 that encodes a human 7-transmembrane..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and cDNA clone HAPOI67 that encodes a human 7-transmembrane... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2436969