CDMA base station having an improved antenna system

Multiplex communications – Communication over free space – Combining or distributing information via code word channels...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S334000, C370S335000

Reexamination Certificate

active

06584091

ABSTRACT:

BACKGROUND
The present invention relates to wireless digital communication systems. More particularly, the present invention relates to communication stations which employ code-division multiple access (CDMA) technology wherein the station has multiple antennas for increasing the capacity of the CDMA system.
Over the last decade consumers have become accustomed to the convenience of wireless communication systems. This has resulted in a tremendous increase in the demand for wireless telephones, wireless data transmission and wireless access to the Internet. The amount of available RF spectrum for any particular system is often quite limited due to government regulation and spectrum allotments. Accordingly, the need to utilize one's allocated RF spectrum efficiently is desired.
CDMA communication systems have shown promise in the effort to provide efficient utilization of the RF spectrum. At least one brand of CDMA systems, Broadband Code Division Multiple Access™ or B-CDMA™ communication systems available from InterDigital Communications Corporation, permit many communications to be transmitted over the same bandwidth, thereby greatly increasing the capacity of the RF spectrum. In B-CDMA™ brand communication systems, an information signal at the transmitter is mixed with a pseudo random “spreading code” which spreads the information signal across the entire bandwidth which is employed by the communication system. The spread signal is upconverted to an RF signal for transmission. A receiver, identified by the pseudo random spreading code, receives the transmitted RF signal and mixes the received signal with an RF sinusoidal signal generated at the receiver by a first-stage local oscillator to downconvert the spread spectrum signal. The spread information signal is subsequently mixed with the pseudo random spreading code, which has also been locally generated, to obtain the original information signal.
In order to detect the information embedded in a received signal, a receiver must use the same pseudo random spreading code that was used to spread the signal. All signals which are not encoded with the pseudo random code of the receiver appear as background noise to the receiver. Accordingly, as the number of users that are communicating within the operating range of a particular communication station increases, the amount of background noise also increases, making it difficult for receivers to properly detect and receive signals. The transmitter may increase the power of the transmitted signal, but this will increase the noise (interference) as seen by other receivers.
Applicants have recognized the need to decrease the amount of interference in order to increase the capacity (number of users) of the CDMA system.
SUMMARY
A communication station for use in a CDMA communication system is provided with an antenna system which includes a plurality of antennas for receiving CDMA communication signals. The antennas are coupled to a summer, which outputs a summed signal from the antenna system. One of the antennas is directly coupled to the summer. Each of the other antennas is coupled to a respective delay unit which imparts a predetermined fixed delay to the signals received by the respective antennas. Each delay unit is in turn coupled to the summer. The antenna system, accordingly, outputs a summed signal which has a known phase distortion corresponding to the fixed delays imparted by the delay units.
A receiver is coupled to the antenna system summer output, strips the carrier frequency, and passes the resultant summed baseband signal to one or more modems. Where the communication station is designed to receive communications associated with a single dedicated CDMA code, such as a subscriber station, a single modem is preferred. Where multiple communications are to be simultaneously processed, such as in a base station or a subscriber unit which serves multiple users or as an emulated base station, multiple modems are provided.
Each modem is configured to receive an individual communication signal contained within the baseband signal associated with unique CDMA codes. The modems include circuitry for compensating for at least the known signal phase distortion imparted by the delay units. Preferably, each modem includes a vector correlator (also known as a rake receiver) for determining filter coefficients which are passed to an adaptive matched filter (AMF). The AMF is a transversal filter which uses the coefficients to overlay delayed replicas of the signal onto each other to provide a filtered signal having increased signal-to-noise ration (SNR).
The vector correlator/rake receiver has a sufficient capacity to determine filter coefficients over a window of time which is at least as wide as the known delays created by the antenna system. Preferably, three antennas are used, first, second and third. The second antenna's signal is delayed to provide a signal replica with a three-chip delay relative to the signal replica provided by the first antenna. The third antenna's signal is delayed to provide a signal replica having a seven-chip delay relative to the signal replica provided by the first. In order to process the delayed replicas of the signal which originated with the second and third antennas, the vector correlator/rake receiver processes information in at least an eleven chip window. The processing of the fourth and eighth chips within the window, accordingly, provides coefficients to compensate for the distortion imparted by the three- and seven-chip delays of the second and third antenna signals.
The use of rake receivers to compensate for multipath distortion of a CDMA signal is disclosed in U.S. patent application Ser. Nos. 08/266,769 and 08/871,109 which are incorporated herein as if fully set forth. It will be recognized to those who are of skill in the art that the utilization of a rake receiver or a vector correlator will provide compensation for not only multipath distortion, but also for the known distortion imparted by the multi-antenna system disclosed herein.
The gain of the signal output by the AMF is monitored by an automatic power control (APC) which relays messages to the transmitting station to control the power of the transmitted signal. Since the vector correlator or rake receiver compensates for both multipath phase distortion as well as the known distortion imparted by the antenna system, an enhanced gain is realized in comparison to a single antenna system where only multipath phase distortion is compensated for. Accordingly, the relatively higher gain which is received enables the APC to direct the transmitting station to lower its power thus increasing the capacity of the overall CDMA system.
Where the physical site of the communication station requires or makes the location of the antenna system desirable at a location relatively distant to the processing components, applicants' have recognized that significant loss in signal strength can occur. To address this problem the receiver/transmitter (RxTx) may be physically separated from the other processing compartments. The RxTx may then be located in relative proximity to the remotely located antennas and relatively distant to the processing modems. A significant improvement in signal strength is seen by the elimination of twenty feet or more of connecting cable between the antenna system and the RxTx. Accordingly, where remote location of the antenna or antenna system is necessary, at least twenty feet of cable is provided to couple the RxTx to the other signal processing equipment permitting the RxTx to be mounted in closer proximity and coupled to the antenna system with a relatively short cable. Preferably, the signal coupling cable which connects the RxTx to the other signal processing equipment includes DC power to provide power to the RxTx.
Other aspects and advantages will become apparent to those skilled in the art after reading the detailed description of the preferred embodiments.


REFERENCES:
patent: 5533011 (1996-07-01), Dean et al.
patent: 5633889 (1997-05-01), Schi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

CDMA base station having an improved antenna system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with CDMA base station having an improved antenna system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and CDMA base station having an improved antenna system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3127664

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.