CD4-independent HIV envelope proteins as vaccines and...

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S208100, C435S069100, C435S235100, C435S320100, C514S04400A, C536S023100, C536S023400

Reexamination Certificate

active

06420545

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to CD4-independent variants of HIV, their proteins, and uses therefor.
HIV entry is known to require an interaction of the viral envelope glycoprotein (Env) with CD4 and cellular chemokine receptors. HIV Env protein is produced as a precursor (gp160) that is subsequently cleaved into two parts, gp120 which binds CD4 and chemokine receptors, and gp41 which is anchored in the viral membrane and mediates membrane fusion. Differential use of chemokine receptors by HIV and SIV has largely explained differences in tropism among different isolates (Berger, 1997, AIDS 11:S3-S16; Hoffman and Doms, 1998, AIDS 12:S17-S26). While a number of chemokine receptors can be utilized by HIV or SIV (Deng et al., 1997, Nature 388:296-300; Choe et al., 1996, Cell 85, 1135-1148; Rucker et al., 1997, J. Virol. 71:8999-9007; Edinger et al., 1997, Proc. Natl. Acad. Sci. USA 94:14742-14747; Liao et al., 1997, J. Exp. Med. 185:2015-2023; Farzan et al., 1997, J. Exp. Med. 186:405-411), CCR5 and CXCR4 appear to be the principal coreceptors for HIV-1 (Zhang et al., 1998, J Virol. 72:9337-9344; Zhang et al., 1998, J. Virol. 72:9337-9344.). Isolates of HIV that first establish infection target blood lymphocytes and macrophages using CCR5 (Alkhatib et al., 1996, Science 272:1955-1958; Deng et al., 1996, Nature 381:661-666; Dragic et al., 1996, Nature 381:667-673; Doranz et al., 1996, Cell 85:1149-1158), while viruses that are generally associated with progression to AIDS and can infect T cell lines in vitro use CXCR4 (Choe et al., 1996, Cell 85:1135-1148; Feng et al., 1996, Science 272:872-876; Connor et al., 1997, J. Exp. Med. 185:621-628).
Binding of Env to CD4 initiates poorly understood conformational changes enabling gp120 to bind to a chemokine receptor and leading to fusion of the viral and cellular membranes (Jones et al., 1998, J. Biol Chem. 273:404409; Moore et al., 1994, J. Virol. 68:469-484; Wyatt, 1992, J. Virol. 66:6997-7004; Wu et al., 1996, Nature 384:179-183). Immunologic and mutagenesis approaches have indicated that these changes involve movement of V1/V2 and V3 hypervariable loops on gp120 (Moore, et al., 1994, J. Virol. 68:469-484; Wyatt et al., 1992, J. Virol. 66:6997-7004; Wu et al., 1996, Nature 384:179-183), which play a critical role in the specificity of chemokine receptor utilization (Choe et al., 1996, Cell 85:1135-1148; Cocchi et al., 1996, Nature Med 2:1244-1247; Cho et al., 1998, J. Virol. 72:2509-2515; Speck et al., 1997, J. Virol. 71:7136-7139; Ross et al., 1998, Proc. Natl. Acad. Sci. U.S.A. 95:7682-7686; Hoffman et al., 1998, Proc. Natl. Acad. Sci. U.S.A. 95:11360-11365). The recent crystallographic resolution of a gp120 core structure bound to CD4 has revealed an intervening &bgr; sheet (the “bridging sheet”) between the inner and outer domains of gp120 that may serve as an additional contact site for the chemokine receptor (Wyatt and Sodroski, 1998, Science 280:1884-1888; Rizzuto et al., 1998, Science 280:1949-1953).
Although CD4 is generally required for gp120 to associate with a chemokine receptor, the identification of CD4-independent isolates of HIV-1, HIV-2, and SIV has demonstrated that functional interactions with chemokine receptors can occur in the absence of CD4 interaction (Edinger et al., 1997, Proc. Natl. Acad. Sci. USA 94:14742-14747; Reeves and Schulz, 1996, J. Virol. 71:1453-1465; Endres et al., 1996, Cell 87:745-756; Dumonceaux et al., 1998, J. Virol. 72:512-519). The determinants for the CD4-independent phenotype have been mapped to the viral env gene, but the underlying mechanisms of this phenotype are unknown. It has been proposed that mutations in env may increase the exposure and/or the affinity of the chemokine receptor binding site on gp120 , thus circumventing the need for CD4 Endres et al., 1996, Cell 87:745-756).
Biochemical assays have also shown that mutated or deglycosylated recombinant gp120 can bind directly to chemokine receptors, suggesting that domains normally activated by CD4 can be artificially exposed (Hesselgesser et al., 1997, Curr. Biol. 7: 112-121; Martin et al., 1997, Science 278:1470-1473; Bandres et al., 1998, J. Virol. 72:2500-2504; Misse et al., 1998, J. Virol. 72:7280-7288). A greater understanding of the determinants responsible for CD4-independence should provide insights into the Env domains that mediate and modulate interactions of Env with chemokine receptors and that ultimately govern viral entry.
To date, the ability of HIV-1 to escape the immune system has hindered development of efficacious vaccines to this important human pathogen. Thus, there is a long-felt and unfilled need for the development of effective vaccines and therapeutic modalities for HIV-1 infection in humans. The present invention meets those needs.
BRIEF SUMMARY OF THE INVENTION
The invention includes an isolated nucleic acid encoding a CD4-independent human immunodeficiency virus-1 (HIV-1) env, or a mutant, derivative, or fragment thereof. In one aspect, the isolated nucleic acid shares at least about 98% homology with the nucleic acid having the nucleotide sequence of SEQ ID NO:4.
In another aspect, the nucleic acid is selected from the group consisting of an HIV-1/IIIBx env, and an HIV-1/IIIBx 8x (8x) env.
In yet another aspect, the nucleic acid is an HIV-1/IIIBx 8x env.
The invention also includes an isolated nucleic acid encoding a CD4-independent HIV env having the nucleotide sequence of SEQ ID NO:4.
The invention includes an isolated nucleic acid comprising a portion of a HIV-1 env gene which confers CD4 independence on at least one HIV-1 env clone.
The invention further includes a chimeric nucleic acid comprising a first portion and a second portion, the first portion encoding at least a portion of an HIV-1/IIIBx 8x env coding sequence and the second portion encoding at least a portion of an HIV-1 env coding sequence which is not an 8x env.
In one aspect, the second portion is an env coding sequence selected from the group consisting of an S10 env, an HXB2 env, a BaL env, and an IIIB env.
In another aspect, the second portion comprises a chemokine receptor binding site selected from the group consisting of a CXCR4 chemokine receptor binding site, and a CCR5 chemokine receptor binding site.
In yet another aspect, the second portion comprises a V3-loop coding sequence selected from the group consisting of a V3-loop for a CXCR4 chemokine receptor binding site, and a V3-loop for a CCR5 chemokine receptor binding site.
The invention includes an isolated HIV-1 gp120 polypeptide comprising a stably exposed chemokine coreceptor binding site.
The invention also includes an isolated polypeptide comprising an HIV-1/IIIBx 8x Env. In one aspect, the polypeptide shares at least about 98% homology with SEQ ID NO:3.
In another aspect, the isolated polypeptide comprises the amino acid sequence of SEQ ID NO:3.
The invention includes a chimeric HIV-1 Env polypeptide comprising a gp120 polypeptide wherein the chimeric polypeptide comprises a first portion comprising an HIV-1/IIIBx 8x gp120 , the chimeric polypeptide further comprising a second portion comprising a gp120 from an HIV-1 other, than HIV-1/IIIBx 8x.
The invention further includes a chimeric HIV-1 Env polypeptide wherein the polypeptide is CD4-independent, and further wherein the polypeptide comprises a chemokine receptor binding site selected from the group consisting of a CXCR4 chemokine receptor binding site, and a CCR5 chemokine receptor binding site.
In one aspect, the second portion comprises a V3-loop selected from the group consisting of a HXB V3-loop, an 8x V3-loop, a BaL V3-loop, a YU-2 V3-loop, and an 89.6 V3-loop.
The invention includes a composition comprising a CD4-independent HIV-1 Env comprising a gp120 polypeptide comprising a stably exposed chemokine receptor binding site wherein the HIV-1 is more sensitive to antibody neutralization than an otherwise identical HIV-1 which does not comprise a stably exposed chemokine receptor binding site.
The invention also includes a pharmaceutical composition comprising a CD4-independent

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

CD4-independent HIV envelope proteins as vaccines and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with CD4-independent HIV envelope proteins as vaccines and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and CD4-independent HIV envelope proteins as vaccines and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2903718

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.