Cationic peptides, Cys-Trp-(Lys)n, for gene delivery

Chemistry: molecular biology and microbiology – Process of mutation – cell fusion – or genetic modification – Introduction of a polynucleotide molecule into or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S006120, C435S320100, C514S04400A, C530S300000, C530S324000, C530S325000, C530S326000, C530S327000, C530S328000, C530S329000, C530S330000

Reexamination Certificate

active

06387700

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the introduction of genes into cells. In particular, the present invention relates to compositions and methods of nucleic acid formulation for gene delivery.
BACKGROUND
There are a number of techniques for the introduction of genes into cells. One common method involves viruses that have foreign genes (e.g., transgenes) incorporated within the viral DNA. However, the viral genes are also delivered with the desired gene and this can lead to undesirable results.
Nonviral gene delivery systems are being developed to transfect mammalian host cells with foreign genes. In such approaches, nucleic acid is typically complexed with carriers that facilitate the transfer of the DNA across the cell membrane for delivery to the nucleus. The efficiency of gene transfer into cells directly influences the resultant gene expression levels.
The carrier molecules bind and condense DNA into small particles which facilitate DNA entry into cells through endocytosis or pinocytosis. In addition, the carrier molecules act as scaffolding to which ligands may be attached in order to achieve site specific targeting of DNA.
The most commonly used DNA condensing agent for the development of nonviral gene delivery systems is polylysine in the size range of dp 90-450. Its amino groups have been derivatized with transferrin, glycoconjugates, folate, lectins, antibodies or other proteins to provide specificity in cell recognition, without compromising its binding affinity for DNA. However, the high molecular weight and polydispersity of polylysine also contribute to a lack of chemical control in coupling macromolecular ligands which leads to heterogeneity in polylysine-based carrier molecules. This can complicate the formulation of DNA carrier complexes and limits the ability to systematically optimize carrier design to achieve maximal efficiency.
Clearly, there is a need for improved methods of gene delivery. Such methods should be amenable to use with virtually any gene of interest and permit the introduction of genetic material into a variety of cells and tissues.
SUMMARY OF THE INVENTION
The present invention relates to the introduction of genes into cells. In particular, the present invention relates to compositions and methods of nucleic acid formulation for gene delivery. The invention contemplates cationic peptides containing aromatic amino acids (i.e., phenylalanine, tyrosine and tryptophan) and in particular, tryptophan-containing peptides that mediate gene transfer by condensing DNA into small particles.
The present invention contemplates methods for introducing nucleic acid into cells (both in vivo and in vitro). In one embodiment, the method comprises a) providing: i) an aromatic amino acid—containing peptide capable of binding to nucleic acid, ii) nucleic acid encoding one or more gene products, and iii) cells capable of receiving said nucleic acid, said cells having cell membranes; b) binding said peptide to said nucleic acid to make a complex; c) introducing said complex to said cells under conditions such that said complex is delivered across said cell membrane.
While it is not intended that the invention be limited by the length of the peptide, it is preferred that the peptides of the present invention are less than forty amino acids in length, more preferably less than thirty amino acids in length, and most preferably, less than twenty amino acids in length.
It is also not intended that the present invention be limited by the precise composition of the peptides. A variety of peptides containing aromatic amino acids are contemplated. In one embodiment, the peptides of the present invention comprise L-lysine (Lys) and tryptophan (Trp). In another embodiment,the peptides of the present invention contain L-lysine (Lys), tryptophan (Trp) and cysteine (Cys). In a preferred embodiment, a peptide is contemplated that demonstrates high activity in mediating gene transfer in cell culture, said peptide having the structure (SEQ ID NO:1): Cys-Trp-(Lys)
18
. Other peptides (including peptides with two, three and four tryptophan residues) are contemplated.
The present invention also contemplates the use of the peptides of the present invention in receptor-mediated gene transfer (both in vitro and in vivo). In one embodiment, the method comprises linking the DNA to a cationic peptide of the present invention (usually an aromatic amino acid- substituted poly-L-lysine) containing a covalently attached ligand, which is selected to target a specific receptor on the surface of the tissue of interest. The gene is taken up by the tissue, transported to the nucleus of the cell and expressed for varying times.
In one embodiment, the receptor-mediated method of the present invention for delivering an oligonucleotide to cells of an animal, comprises a) providing: i) a target binding moiety capable of binding to a receptor present on the surface of a cell in a tissue of an animal, ii) an aromatic amino acid—substituted polylysine capable of binding to nucleic acid, iii) an oligonucleotide encoding one or more gene products, and iv) a recipient animal having cells, said cells having said receptor; b) conjugating said target binding moiety to said substituted polylysine to form a carrier; c) coupling said carrier with said oligonucleotide to form a pharmaceutical composition; and d) administering said composition to said recipient animal under conditions such that said oligonucleotide is delivered to said cells.
As noted above, the present invention contemplates polylysine peptides containing tryptophan for use in gene delivery. In one embodiment, the synthetic peptides contemplated possess a lysine repeat varying from between 3 and 36 residues and comprise one or more tryptophan and cysteine residues. In a preferred embodiment, the peptide comprises 13-18 lysine residues; such peptides which possess a single tryptophan residue enhances gene transfer to cells in culture by up to three orders of magnitude relative to comparable polylysine peptide lacking a tryptophan.
An understanding of how the peptides of the present invention improve the gene delivery in a superior manner is not required to practice the present invention. Nonetheless, it is believed that the mechanism of peptide mediated gene transfer is related to the efficiency of condensing DNA into small particles. While not limited to any particular theory, it is believed that tryptophan plays a specific role in organizing the DNA binding of cationic peptide to produce small condensates that exhibit enhanced gene transfer efficiency. In this manner, the tryptophan-containing peptides of the present invention represent a new class of low molecular weight condensing agents that may be modified with ligands to produce low molecular weight carriers for site specific gene delivery.
It is not intended that the present invention be limited by the nature of the nucleic acid. The target nucleic acid may be native or synthesized nucleic acid. The nucleic acid may be from a viral, bacterial, animal or plant source.
DEFINITIONS
To facilitate understanding of the invention, a number of terms are defined below.
The term “gene” refers to a DNA sequence that comprises control and coding sequences necessary for the production of a polypeptide or precursor thereof. The polypeptide can be encoded by a full length coding sequence or by any portion of the coding sequence so long as the desired activity is retained.
The term “wild-type” refers to a gene or gene product which has the characteristics of that gene or gene product when isolated from a naturally occurring source. A wild-type gene is that which is most frequently observed in a population and is thus arbitrarily designated the “normal” or “wild-type” form of the gene. In contrast, the term “modified” or “mutant” refers to a gene or gene product which displays modifications in sequence and or functional properties (i.e., altered characteristics) when compared to the wild-type gene or gene product. It is noted that naturally-occurring mutants can be isolated; these are i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cationic peptides, Cys-Trp-(Lys)n, for gene delivery does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cationic peptides, Cys-Trp-(Lys)n, for gene delivery, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cationic peptides, Cys-Trp-(Lys)n, for gene delivery will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2829369

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.