Catheters, systems and methods for percutaneous in situ...

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S164090

Reexamination Certificate

active

06544230

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to medical devices and methods, and more particularly to catheter devices and methods that are useable to form channels (e.g., penetration tracts) between vessels such as arteries and veins as well as between vessels and other anatomical structures, in furtherance of a therapeutic purpose such as bypassing an arterial blockage, delivering therapuetic agents, or performing other interventional procedures.
BACKGROUND OF THE INVENTION
Applicant has invented several new interventional procedures wherein channels (e.g., bloodflow passageway(s)) are formed between blood vessels, and between blood vessels and other target structures, using transluminally advanceable catheters. These new procedures include novel percutaneous, transluminal techniques for bypassing obstructions in coronary or peripheral arteries through the use of the adjacent vein(s) as in situ bypass conduit(s), and other means of revascularizing oxygen starved tissues or delivering therapuetic substances to vessels, tissue and other organs. These procedures are fully described in U.S. Pat. No. 5,830,222 and in U.S. patent application Ser. Nos. 08/730,496, 09/048,147 and 09/048,147. Some of these procedures may be performed by a venous approach, such as vein-to-artery wherein a tissue penetrating catheter is inserted into a vein and the desired arterio-venous passageway is initially formed by passing a tissue penetrating element (e.g., a flow of energy or an elongate penetration member) from a catheter, through the wall of the vein in which the catheter is positioned, and into the lumen of an adjacent artery. Alternatively, some of these procedures may be performed by an artery-to-vein approach wherein the catheter is inserted into an artery and the desired arterio-venous passageway is initially formed by passing a tissue penetrating element (e.g., a flow of energy or elongate penetration member) from the catheter, through the wall of the artery in which the catheter is positioned, and into the lumen of an adjacent vein. Both approaches have been previously described in U.S. patent application Ser. No. 08/730,327. In addition, it may be advantageous to direct a penetrating element directly into other anatomical structures such as the myocardium, pericardium, chamber of the heart or other organs as described in U.S. patent application Ser. No. 09/048,147.
Different considerations and limitations may apply, depending upon which of these approaches (the vein-to-artery approach, the “artery-to-vein” approach, or vessel to other anatomical structure) is being used or, more generally, the size and contour of the blood vessel lumen in which the operative catheters are to be placed, and the distance and/or angle between the vessels or other target. This is due in part to the fact that, in the heart as well as in other areas of the body, adjacent arteries and veins may be of significantly different diameter and significantly different dilatory capability. In addition, depending on the procedure to be performed, for example, such as the desired angle of channel creation between blood vessels, one approach may be preferred over the other, to promote, among other things, blood flow channels that encourage non-turbulent blood flow. Also, the consequences associated with causing temporary complete obstruction of a vein may be significantly less than the consequences of causing temporary complete obstruction of an artery. Thus, it is desirable to devise tissue penetrating catheters of the above-described type that are sized, configured and/or equipped differently for use in blood vessels of different sizes, shapes and in connection with different types of pathology.
Moreover, it is desirable for tissue penetrating catheters of the abovedescribed type to be constructed and equipped for precise aiming and control of the tissue penetrating element as the tissue penetrating element passes from the catheter, through at least the wall of the blood vessel in which the catheter is located, and to the target location. Such aiming and control of the tissue penetrating element ensures that it will create the desired penetration tract at the intended location with minimal or no damage to surrounding tissues or other structures.
SUMMARY OF THE INVENTION
The present invention provides methods and apparatus for performing the percutaneous in situ coronary arterio-venous bypass procedures generally described in U.S. Pat. No. 5,830,222 and U.S. patent application Ser. No. 08/730,327, and other procedures requiring the use of accurately placed catheter elements.
A. Devices and System:
In accordance with the invention, there is provided a system for forming an initial penetration tract from the lumen of a blood vessel in which the catheter is positioned to a target location (such as another blood vessel, organ or myocardial tissue). This system generally comprises:
a) a coronary sinus guide catheter which is insertable within the venous system of the body and into the coronary sinus of the heart;
b) a tissue penetrating catheter which is advanceable to a position within a coronary vein, such tissue-penetrating catheter comprising i) a flexible catheter body, ii) a tissue penetrating element (e.g., a needle member, electrode or flow of energy) which is passable from the catheter body, through the wall of the coronary vein in which the catheter body is positioned and into the lumen of an adjacent coronary artery, or other targeted structure, iii) an imaging lumen through which an imaging catheter (e.g., an intravascular ultrasound imaging (IVUS) catheter) may be passed; and,
c) a separate imaging catheter (e.g., an intravascular ultrasound (IVUS) catheter) that is advanceable through the imaging lumen of the tissue-penetrating catheter.
In addition to components a-c above, this catheter system may include a subselective sheath and introducer. The subselective sheath comprises a flexible tubular sheath that has a proximal end, a distal end and a lumen extending therethrough. The introducer is insertable through the lumen of the sheath and has a tapered, non-traumatizing distal portion that protrudes out of and beyond the distal end of the sheath as well as a guidewire lumen extending longitudinally therethrough. The tapered, non-traumatic distal portion of the introducer serves to dilate the blood vessel lumens or openings through which the sheath is inserted, thereby facilitating advancement and positioning of the sheath at a desired location within the body. After the sheath has been advanced to its desired position within the body, the introducer is extracted and various channel modifying catheters, connector delivery catheters and/or blocker delivery catheters may be advanced through the subselective sheath.
The coronary sinus guide catheter may incorporate a hemostatic valve to prevent backflow or leakage of blood from the proximal end thereof. Also, the coronary sinus guide catheter may include an introducer that is initially insertable through the guide catheter lumen. This introducer has a tapered, non-traumatizing distal portion that protrudes out of and beyond the distal end of the guide catheter, and a guidewire lumen extending longitudinally therethrough. The tapered, non-traumatizing distal portion of the introducer served to dilate the blood vessel lumens through which the guide catheter is inserted, thereby facilitating advancement and positioning of the coronary sinus guide catheter within the coronary venous sinus.
The tissue-penetrating catheter may incorporate one or more of the following elements to facilitate precise aiming and control of the tissue-penetration element and the formation of the passageway at the desired location:
a) Orientation Structure: An orientation structure may be positioned or formed on the distal end of the tissue penetrating catheter. This orientation structure has i) a hollow cavity or space formed therewithin in alignment with the catheter's imaging lumen and ii) a marker member positioned in direct alignment with the opening in the cathet

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Catheters, systems and methods for percutaneous in situ... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Catheters, systems and methods for percutaneous in situ..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Catheters, systems and methods for percutaneous in situ... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3113024

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.