Catheter with multi-layer wire reinforced wall construction

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S528000, C138S124000

Reexamination Certificate

active

06508806

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to the field of intraluminal catheters, and particularly to guiding or angiography catheters suitable for intravascular procedures such as angioplasty and/or stent deployment, and the like.
In percutaneous transluminal coronary angioplasty (PTCA) procedures, a guiding catheter having a shaped distal section is percutaneously introduced into the patient's vasculature by a conventional “Seldinger” technique and then advanced through the patient's vasculature until the shaped distal section of the guiding catheter is adjacent to the ostium of a desired coronary artery. The proximal end of the guiding catheter, which extends out of the patient, is torqued to rotate the shaped distal section. As the distal section rotates, it is guided into desired coronary ostium. The distal section of the guiding catheter is shaped so as to engage a surface of the ascending aorta and thereby seat the distal end of the guiding catheter in the desired coronary ostium and to hold the catheter in that position during the procedures when other intravascular devices such a guidewires and balloon catheters are being advanced through the inner lumen of the guiding catheter.
In the typical PTCA or stent delivery procedures, the balloon catheter with a guidewire disposed within an inner lumen of the balloon catheter is advanced within the inner lumen of the guiding catheter which has been appropriately positioned with its distal tip seated within the desired coronary ostium. The guidewire is first advanced out of the distal end of the guiding catheter into the patient's coronary artery until the distal end of the guidewire crosses a lesion to be dilated or a location where a stent is to be deployed. A balloon catheter is advanced into the patient's coronary anatomy over the previously introduced guidewire until the balloon on the distal portion of the balloon catheter is properly positioned across the lesion. Once properly positioned, the balloon is inflated with inflation fluid one or more times to a predetermined size so that in the case of the PTCA procedure, the stenosis is compressed against the arterial wall and the wall expanded to open up the vascular passageway. In the case of stent deployment, the balloon is inflated to plastically expand the stent within the stenotic region. Generally, the inflated diameter of the balloon is approximately the same diameter as the native diameter of the body lumen being dilated so as to complete the dilatation or stent deployment but not overexpand the artery wall. After the balloon is finally deflated, blood flow resumes through the dilated artery and the dilatation catheter and the guidewire can be removed therefrom.
Generally, the stent deployment occurs after a PTCA procedure has been performed at the stenotic site. However, recently, in some situations the stent deployment and lesion dilatation is accomplished simultaneously. In addition to their use in PTCA and stent delivery procedures, guiding catheters are used to advance a variety of electrophysiology catheters and other therapeutic and diagnostic devices into the coronary arteries, the coronary sinus, the heart chambers, neurological and other intracorporeal locations for sensing, pacing, ablation and other procedures. For example, one particularly attractive procedure for treating patients with congestive heart failure (CHF) involves introduction of a pacing lead into the patient's coronary sinus and advancing the lead until the distal end thereof is disposed within the patient's great coronary vein which extends from the end of the coronary sinus. A second pacing lead is disposed within the patient's right ventricle and both the left and right ventricle are paced, resulting in greater pumping efficiencies and blood flow out of the heart which minimizes the effects of CHF. Current construction of many commercially available guiding catheters include an elongated shaft of a polymeric tubular member with reinforcing strands (usually metallic or high strength polymers) within the wall of the tubular member. The strands are usually braided into a reinforcing structure. The strands are for the most part unrestrained except by the polymeric wall. The desired shape in the distal section of the catheter, which facilitates its deployment at the desired intracorporeal location, is typically formed by shaping the distal section into the desired shape and heat setting the polymeric material of the catheter wall to maintain the desired shape. There is usually some spring-back after the heat formation due to the reinforcing braid, but this is usually compensated for in the shape the catheter is held in during the heat setting.
Clinical requirements from utilization of guiding catheters to advance electrophysiology catheters and the like have resulted in an increase in the transverse dimensions of the inner lumens of guiding catheters to accommodate a greater variety of intracorporeal devices and a decrease in the outer transverse dimensions of the guiding catheter to present a lower profile and thereby facilitate advancement within the patient's body lumens and openings.
What has been needed is a catheter design which would allow for continued thinning of the catheter wall while facilitating the formation of the shape of the distal end of the catheter.
SUMMARY OF THE INVENTION
The present invention is directed to an improved catheter shaft construction which can be employed in guiding or angiography catheters for angioplasty procedures.
The catheter shaft of the invention generally includes an elongated tubular member having an inner lumen extending therein. The catheter shaft has a wall construction, which comprises a combination of multiple, preferably two layers of wire, cord or fiber reinforcement. One of them consists of a left hand and right hand set of wires wound at a lay angle of about ±20° to about ±75°, preferably about ±40° to about ±70°, most preferably about ±65°, with respect to the longitudinal axis of the tubular shaft, and the other layer of wire is wound in a substantially circumferential manner (coiled) at a preferred pitch of approximately twice the wire width along the same longitudinal axis. The circumferential coil has such a pitch as to yield a percent coverage of between about 10% and about 80%, preferably about 50%. The combination of the two layers, along with the properties of the polymer matrix used, provides the catheter shaft the desired structural properties, such as, torsional stiffness, torsional collapse load, bending stiffness, and bend kink. The structural properties of this wall construction can also be easily modified by varying one or more of the design parameters, such as wire material, wire size, wire volume fraction, braid lay angle, coil pitch or matrix polymer.
The expression “oblique wound layer” is used in the text of this application for one of the two layers of the wall construction and it represents the layer of wire braided at a lay angle of from about ±20° to about ±75°, preferably about ±40° to about ±70°, most preferably about ±65°, with respect to the longitudinal axis of the tubular shaft.
The expression “circumferential wound layer” in general refers to a coil of pitch about twice the wire width, yielding a coil coverage of about 50%. The coil coverage is defined as the ratio of wire width to pitch expressed as a percentage. This pitch may be varied to provide from about 10% coverage to about 80% coverage to accommodate the structural needs.
The wires suitable for the present invention include any stiff filamentary fibers, such as, but not limited to, carbon or boron fiber, glass, ceramic or graphite non-metallic wires, Kevlar (polyaramid), metallic wires such as stainless steel ribbons or a superelastic metal such as Nitinol, natural and synthetic fibers such as nylon, and polyesters fibers. The wire reinforcement of the oblique wound layer can be braided or filament wound. If braided, a triaxial br

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Catheter with multi-layer wire reinforced wall construction does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Catheter with multi-layer wire reinforced wall construction, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Catheter with multi-layer wire reinforced wall construction will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3043124

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.