Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...
Reexamination Certificate
1998-12-09
2001-01-23
Nguyen, A. T. (Department: 3763)
Surgery
Means for introducing or removing material from body for...
Treating material introduced into or removed from body...
C604S167040
Reexamination Certificate
active
06176843
ABSTRACT:
FIELD OF THE INVENTION
The present invention is related generally to methods for preparing inflatable balloon catheters for use. Specifically, the present invention relates to methods and devices for infusing balloon catheters with inflation fluid and expelling air prior to use.
BACKGROUND OF THE INVENTION
Balloon dilatation catheters are used in medical procedures in which a body vessel is dilated. One such procedure is angioplasty, in which a stenosed, narrowed blood vessel is widened using an inflatable balloon catheter. Balloon catheters are also used for stent delivery. The balloon catheter typically includes an elongate, flexible shaft having an inflatable balloon disposed near the catheter distal end. The shaft commonly includes an inflation lumen within. The inflation lumen is in fluid communication with the balloon such that balloon inflation is accomplished by injecting fluid under pressure into the inflation lumen. The catheter can also have a guide wire lumen either extending the length of the shaft in “over the wire” catheters or extending only the length of the balloon or the length of the balloon and part of the shaft in “single operator exchange” catheters. The catheters are long enough to extend from an insertion point near the groin or arm to the coronary arteries.
During treatment, the inflation lumen is filled with inflation fluid under pressure, causing balloon expansion within the narrowed region to be dilated. Prior to treatment, the catheter must be prepared for use. Preparation includes preloading the inflation lumen and balloon with inflation fluid. Preparations also include purging the catheter inflation lumen and balloon of air. Balloon catheters have commonly had a single orifice for both injecting inflation fluid into the catheter and releasing air from the catheter. Specifically, the inflation lumen proximal port is typically the only orifice through which inflation fluid passes.
Inflation fluid can be injected into the inflation lumen proximal port while the catheter is held vertically such that the balloon is much lower than the proximal port. Alternately, inflation fluid can be drawn in by pulling a vacuum from the distal end of the catheter. Some air bubbles rise through the sinking inflation fluid, the inflation fluid partially adhering to tube walls due to surface tension. It would be more desirable to have both an inflation fluid inlet and outlet orifice, allowing for inflation fluid entry through one orifice and air and fluid exit through the other orifice.
Bromander, in U.S. Pat. No. 5,100,385, proposes placing a one-way valve between the guide wire lumen and inflation lumen. Bromander discusses using the proximal guide wire port for entry of inflation fluid, and using the proximal inflation lumen port for exit of inflation fluid. In the Bromander design, bleeding the catheter while having inflation injection equipment attached can be difficult as the inflation fluid entry and bleed ports are one in the same. The Bromander design also positions the one-way valve within the balloon. This is less than optimal, as the distally disposed balloon preferably has a small profile and locating the valve within the balloon can increase this profile. The balloon, during preparation, is preferably tightly wrapped and constrained within a balloon protector, leaving little room for movement of the one-way valve mechanism.
What would be desirable is an improved balloon catheter capable of being rapidly purged of air and filled with inflation fluid prior to use. An improved method for rapidly purging and filling a balloon catheter with inflation fluid would be desirable.
SUMMARY OF THE INVENTION
The present invention includes an inflatable balloon catheter adapted to be rapidly purged of air and prepared for use, including being filled with inflation fluid. One catheter according to the present invention includes a proximal region, a distal region, an inflatable balloon having an envelope, a guide wire lumen in fluid communication with the balloon envelope, a one-way valve allowing fluid flow from the guide wire lumen into the inflation lumen, and a switchable valve in fluid communication with the inflation lumen. The switchable valve is preferably disposed at the inflation lumen proximal end, and has a bleed position and an inflation position. One embodiment switchable valve also has a closed or blocking position, blocking fluid flow from the inflation lumen proximal end.
In one embodiment, the guide wire lumen is defined by a guide wire tube which is coaxially disposed within an inflation tube defining the inflation lumen for most of the length of the inflation tube. In another embodiment, the guide wire tube is enveloped by an inflation lumen preferably having a crescent shaped cross section. In yet another embodiment, a “single operator exchange” embodiment, the guide wire lumen is substantially coextensive with the balloon, not being substantially co-extensive with the inflation lumen proximal of the balloon.
One method for preparing a catheter for use includes providing a catheter as previously described, preferably blocking the guide wire lumen proximal port, forcing inflation fluid under pressure into the guide wire lumen distal port, thereby allowing the inflation fluid to flow through the one way valve into the inflation lumen and balloon. The inflation fluid is allowed to flow proximally out of the inflation lumen proximal port. Methods utilizing catheters having a proximal switchable valve can include setting the valve to a bleed position prior to forcing the inflation fluid from the catheter and setting the valve to an inflation position prior to inflating the balloon with inflation fluid. Alternatively, a check valve could be used. In switchable valves having a closed position, the valve can be closed and the catheter set aside between preparation and use.
REFERENCES:
patent: 5100385 (1992-03-01), Bromander
patent: 5224933 (1993-07-01), Bromander
patent: 5545133 (1996-08-01), Burns et al.
patent: 5674193 (1997-10-01), Hayes
patent: 5695468 (1997-12-01), Lafontaine et al.
patent: 5785685 (1998-07-01), Kugler et al.
patent: 0 299 158 A1 (1989-01-01), None
Blaeser David J.
DiCaprio Fernando
Crompton Seager & Tufte LLC
Nguyen A. T.
Sci-Med Life Systems, Inc.
LandOfFree
Catheter with distal manifold prep valve/manifold does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Catheter with distal manifold prep valve/manifold, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Catheter with distal manifold prep valve/manifold will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2511201