Catheter system with catheter and guidewire exchange

Surgery – Instruments – Internal pressure applicator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06398799

ABSTRACT:

BACKGROUND OF INVENTION
This invention generally relates to a catheter system which is suitable for intravascular procedures such as percutaneous transluminal coronary angioplasty (PTCA) and which allows for the exchange of guidewires and catheters during such procedures.
In classic PTCA procedures, a guiding catheter having a preshaped distal tip is percutaneously introduced into the cardiovascular system of a patient. The guiding catheter is advanced until its preshaped distal tip is disposed within the aorta adjacent the ostium of the desired coronary artery. The guiding catheter is twisted or torqued from the proximal end to turn the distal tip of the guiding catheter, so it can be guided into the coronary ostium.
A dilatation catheter having a balloon on its distal end and a guidewire slidably disposed within an inner lumen of the dilatation catheter are introduced into and advanced through the guiding catheter to its distal tip. The distal tip of the guidewire is usually manually shaped (i.e. curved) by the physician or one of the attendants before the guidewire is introduced into the guiding catheter along with the dilatation catheter.
The guidewire is first advanced out the distal tip of the guiding catheter, which is seated in the ostium of the patient's coronary artery, into the patient's coronary artery. A torque is applied to the proximal end of the guidewire, which extends out of the patient, to guide the curved or otherwise shaped distal end of the guidewire as the guidewire is advanced within the coronary anatomy until the shaped distal end of the guidewire enters the desired artery. The advancement of the guidewire within the selected artery continues until it crosses the lesion to be dilated.
The dilatation catheter is then advanced out of the distal tip of the guiding catheter, over the previously advanced guidewire, until the balloon on the distal extremity of the dilatation catheter is properly positioned across the lesion. Once properly positioned, the flexible, relatively inelastic balloon is inflated to a predetermined size with radiopaque liquid at relatively high pressures (e.g., 4-12 atmospheres) to dilate the stenosed region of the diseased artery. The balloon is then deflated, so the dilatation catheter can be removed from the dilated stenosis and blood flow can then be resumed.
Further details of guiding catheters, dilatation catheters, guidewires, and the like for angioplasty procedures can be found in U.S. Pat. No. 4,323,071 (Simpson-Robert); U.S. Pat. No. 4,439,185 (Lundquist); U.S. Pat. No. 4,468,224 (Enzmann et al.); U.S. Pat. No. 4,516,972 (Samson); U.S. Pat. No. 4,438,622 (Samson et al.); U.S. Pat. No. 4,554,929 (Samson et al.); U.S. Pat. No. 4,582,185 (Samson); U.S. Pat. No. 4,616,652 (Simpson); U.S. Pat. No. 4,638,805 (Powell); U.S. Pat. No. 4,748,986 (Morrison et al.); U.S. Pat. No. 4,898,577 (Badger et al.); and U.S. Pat. No. 4,748,982 (Horzewski et al.) which are incorporated by reference.
Recently, Advanced Cardiovascular Systems, Inc., introduced into the marketplace an improved dilatation catheter which is described and claimed in copending application Ser. No. 07/550,801 (Yock), filed Jul. 9, 1990 and U.S. Pat. No. 4,748,982 (Horzewski et al.). This dilatation catheter has a short guidewire-receiving sleeve or inner lumen extending through just the distal portion of the catheter. The sleeve extends proximally at least 10 cm, typically about 25 cm, from a guidewire port in the distal end of the catheter to another guidewire port in the wall of the catheter. A slit is provided in the catheter wall. The slit extends distally from the second guidewire port to a location proximal to the proximal end of the inflatable balloon. The structure of the catheter allows for the rapid exchange of the catheter without the need for an exchange wire or adding a guidewire extension to the proximal end of the guidewire.
The catheter design embodying the Yock and Horzewski et al. improvements has been widely praised by members of the medical profession and has met with much commercial success in the market place. Nonetheless, there are some inconveniences in its use because the catheter does not allow for the exchange or replacement of the guidewire. For example, the shaped distal tip of the guidewire may become deformed in use or the shape of the distal tip or the size of the guidewire may be found to be no longer suitable for the particular procedure within the patient's vasculature. In this instance the physician might want to remove the guidewire and reshape the distal tip or replace the first guidewire with another having the desired size, stiffness or shape.
When the guidewire in a dilatation catheter system embodying the Yock and Horzewski et al. improvements is removed, however, access to the desired arterial location through the distal guidewire lumen of the catheter is lost. Unfortunately, there is no way to clinically determine before the guidewire is inserted into the patient in an angioplasty procedure whether a guidewire or a catheter will have to be exchanged during the procedure.
SUMMARY OF INVENTION
What has been needed and heretofore unavailable is an intravascular catheter system which allows for the rapid exchange of either the catheter or the guidewire during an intravascular procedure without losing access to the desired region of the patient's arterial system. The present invention satisfies this and other needs.
The present invention is an elongated catheter for performing an intravascular procedure within a patient's vascular system. This catheter system can be used in an over-the-wire type mode and can also allow for the exchange of either a guidewire or a catheter mounted over a guidewire during an intraluminal procedure without losing access to the body lumen. One example of an interluminal procedure for which this catheter is particularly useful is percutaneous coronary angioplasty (PTCA).
The catheter includes an elongated catheter body having proximal and distal ends and an exterior. A guidewire-receiving inner lumen extends within the catheter body to its distal end. Means are provided on the distal portion of the catheter body for performing an intravascular procedure. The means may take the form of any known tool, such as a dilatation balloon.
A first guidewire port is provided in the catheter body at or near the proximal end of the catheter body. The first guidewire port is in communication with the guidewire-receiving inner lumen.
A second guidewire port is provided in the catheter body. The second guidewire port is spaced proximally from the tool to perform a vascular procedure and a short distance from the distal end of the catheter body. The second guidewire port is in communication with the guidewire-receiving inner lumen.
A third guidewire port is provided in the distal end of the catheter body. The third guidewire port is in communication with the guidewire-receiving inner lumen.
A wall portion of the catheter body at least partially defines the guidewire receiving inner lumen. The wall portion is openable substantially from the first guidewire port substantially to the second guidewire port, and from the guidewire-receiving inner lumen to the exterior of the catheter body. The wall of the catheter body opens to allow a guidewire to exit laterally from the inner lumen through the wall portion by peeling the catheter body from the guidewire.
In a presently preferred embodiment the catheter is a balloon dilatation catheter adapted to perform PTCA procedures. One of the attractive features of this catheter design is that the catheter can be used as an over-the-wire type dilatation catheter in a conventional fashion, yet it allows both the catheter and the guidewire to be exchanged during the PTCA procedure. Similar catheter designs can be used with other intraluminal catheters that have diagnostic or therapeutic tools on the distal portion of the catheter.


REFERENCES:
patent: 4323071 (1982-04-01), Simpson et al.
patent: 4439185 (1984-03-01), Lundquist
patent: 4468224 (1984-08-01), Enzma

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Catheter system with catheter and guidewire exchange does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Catheter system with catheter and guidewire exchange, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Catheter system with catheter and guidewire exchange will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2957669

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.