Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...
Reexamination Certificate
1998-12-01
2001-01-30
Yasko, John D. (Department: 3734)
Surgery
Means for introducing or removing material from body for...
Treating material introduced into or removed from body...
C604S532000, C604S096010
Reexamination Certificate
active
06179827
ABSTRACT:
FIELD OF THE INVENTION
The present invention is generally related to medical catheters and procedures for using the same, and more particularly to catheters having multiple lumens adapted to be inserted into body vessels including access vessels having a limited diameter with respect to the cannula diameter.
BACKGROUND OF THE INVENTION
In the medical profession, the use of catheters to deliver and vent fluids from body vessels is becoming more pervasive due to the advancement of minimally invasive procedures. It is often desired to insert a catheter into a body vessel such as the aorta, urethra etc. via an access vessel having a restricted diameter. The catheter usually has a plurality of lumens, for instance, one lumen to infuse a fluid such as a medicant or oxygenated blood, and another lumen for inflating a balloon to selectively occlude the body vessel. The number of lumens, and particularly the aggregate cross sectional area of the lumens, substantially determines the overall catheter diameter. It is desired to keep the overall diameter of the catheter as small as possible, especially with respect to the access vessel and the vessel for which it is intended to be placed to reduce trauma to the vessel.
With respect to aortic balloon catheters in particular, these catheters may be percutaneously inserted into a patient's femoral artery, serving as an access vessel, and advanced upwardly into the aorta of the patient. According to one conventional method, a first catheter is inserted into the femoral artery and advanced into the ascending aorta. The catheter may include a balloon for selectively occluding the aorta and have multiple lumens terminating at the distal end thereof for delivering cardioplegia to the aortic root and/or venting fluid from the aorta above the aortic root. Other lumens may provide for instrumentation to be inserted into the aorta, which may be advanced through the aortic valve into the heart. The proximal end of the catheter may be provided with a lumen terminating proximate the point of insertion to provide arterial return of oxygenated blood. Alternatively, a separate second catheter may be inserted into the patient's other femoral artery to provide arterial return of oxygenated blood. This second catheter is used to reduce the overall diameter of the first catheter body advanced into the aorta, thus reducing trauma to the aorta lining. The distal end of this second catheter is also advanced only to proximate the point of insertion since it is semi-rigid and has a relatively large diameter to provide the required arterial return of oxygenated blood into the aorta. By using a second catheter, a rather large diameter first catheter is not necessary to be inserted into the aorta which may cause trauma to the lining of the artery. However, returning oxygenated blood well below the aorta requires oxygenated blood to flow counter to typical arterial blood flow, upwardly into the ascending aorta to the various arteries branching therefrom.
The disadvantages of this approach include the fact that returning oxygenated blood to the aorta upwardly in a direction counter to normal flow has been found in some studies to be damaging to the artery lining, and which may create aortic dissection, aneurysms, and in some cases death. In addition, this method requires a second infusion catheter to be inserted and manipulated which can be cumbersome.
A semi-rigid catheter having a large lumen for providing arterial return of oxygenated blood, as well as having lumens for pressure sensing, cardioplegia delivery/venting, and balloon inflation, necessitates a relatively large aortic balloon catheter having a large overall diameter that is difficult to femorally insert and manipulate up into the ascending aorta. If too large a catheter is used, the artery can be damaged or traumatized during insertion. It is desired to provide an improved catheter suited for use in body vessels having a limited diameter while being capable of delivering fluids at a high flow rate, two criteria that typically limit each other. In particular, the improved catheter would have one intended use as a catheter that can be femorally inserted to provide arterial return of oxygenated blood into the ascending aorta.
SUMMARY OF THE INVENTION
The present invention achieves technical advantages as a single catheter having a relatively large inflatable/collapsible lumen suited for insertion via smaller access vessels into larger vessels. The larger lumen is collapsed during insertion, and inflated during fluid delivery. The catheter can be inserted via an access artery and provide arterial return of oxygenated blood into the ascending aorta. This inflatable/collapsible lumen is secured to the main catheter body distal end, and surrounds the main catheter body having multiple lumens for facilitating other functions, such as pressure sensing at the catheter distal end, balloon inflation, and delivery of cardioplegia/venting at the catheter distal end.
In one embodiment, the catheter of the present invention derives technical advantages as being adapted to be percutaneously positioned into the aorta via a femoral artery with the large lumen in the collapsed position. This large lumen has a very thin wall facilitating inflation/collapsing about the main catheter body, preferably being comprised of polyethylene. Subsequently, by infusing a fluid, such as oxygenated blood, into the large lumen, the large lumen self expands due to fluid pressure of the fluid flowing therethrough to the lumen distal end. In another embodiment, the catheter can be inserted into other access vessels such as a subclavian artery.
The present invention derives technical advantages as a single catheter having multiple lumens and a reduced overall diameter. The catheter has a relatively small overall diameter during insertion through access arteries to the aorta with the large lumen in the collapsed position during advancement. This small diameter provides good control of the catheter during insertion, reducing the risk of damaging or traumatizing the lining of the artery. The catheter main body provides advancement of the large lumen within the vessel, and the catheter is sufficiently rigid to avoid kinking during insertion.
The present invention has other numerous uses and advantages in the surgical field whereby a large catheter lumen is required for exchanging a fluid to a body vessel, but the body vessel has a relatively small diameter and is difficult to navigate in and is susceptible to trauma. For instance, the present invention is ideally suited for use as a ureter catheter as well.
REFERENCES:
patent: 4406656 (1983-09-01), Hattler et al.
patent: 5383854 (1995-01-01), Safar et al.
patent: 5462530 (1995-10-01), Jang
patent: 5466222 (1995-11-01), Ressemann et al.
patent: 5536250 (1996-07-01), Klein et al.
patent: 5618267 (1997-04-01), Palestrant
patent: 5738649 (1998-04-01), Macoviak
patent: 5795331 (1998-08-01), Cragg et al.
Davis Albert
Suresh Mitta
Chase Medical
Jackson & Walker, LLP
Yasko John D.
LandOfFree
Catheter having integral expandable/collapsible lumen does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Catheter having integral expandable/collapsible lumen, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Catheter having integral expandable/collapsible lumen will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2456535