Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation
Reexamination Certificate
2000-01-13
2001-07-24
Lateef, Marvin M. (Department: 3737)
Surgery
Diagnostic testing
Detecting nuclear, electromagnetic, or ultrasonic radiation
C600S471000, C606S190000
Reexamination Certificate
active
06266550
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention:
This invention relates generally to catheters and more particularly to catheter apparatus for treating arterial occlusions. The invention relates especially to the combination of an intraluminally operable atheroma-penetrating catheter device with an extraluminally operable imaging device to restore blood flow in an occluded coronary artery.
2. Background:
Atherosclerosis is a disease in which the lumen (interior passage) of an artery becomes stenosed (narrowed) or even totally occluded (blocked) by an accumulation of fibrous, fatty, or calcified tissue. Over time this tissue, known in medicine as an atheroma, hardens and blocks the artery. In the coronary arteries, which supply the heart muscle, this process leads to ischemia (deficient blood flow) of the heart muscle, angina (chest pain), and, eventually, infarction (heart attack) and death. Although drug therapies and modifications to diet and lifestyle show great promise for preventing and treating atherosclerotic vascular disease, many patients urgently require restoration of blood flow that has already been lost, especially in those having severely or totally occluded blood vessels. Unfortunately, the demand for surgical treatment of disabling and life-threatening coronary artery disease will likely increase in the decades ahead.
It has been common surgical practice to treat severe coronary artery disease by performing a coronary bypass, in which a segment of the patient's saphenous vein (taken from the leg) is grafted onto the artery at points upstream and downstream of the stenosis. The bypass often provides dramatic relief. However, this procedure involves not only dangerous open chest surgery, but also an operation on the patient's leg to obtain the segment of saphenous vein that is used for the bypass. Additionally, there is a long, often complicated and painful, convalescence before the patient is healed. Moreover, within a few years, the underlying disease may invade the bypass graft as well. The bypass can be repeated, but at ever greater peril and expense to the patient.
Fortunately, for patients with moderate stenosis, a less traumatic operation is available. A typical mechanical device for such operations is a thin, flexible, tubular device called a catheter. Through a small, conveniently located puncture, the catheter is introduced into a major artery, typically a femoral artery. Under fluoroscopic observation, the catheter is advanced and steered through the arterial system until it enters the stenosed region. At the distal (tip) end of the catheter, a balloon, cutter, or other device dilates the stenosed lumen or removes atheromatous tissue.
Cardiac catheterization procedures for treating stenoses include percutaneous transluminal coronary angioplasty (PTCA), directional coronary atherectomy (DCA), and stenting. PTCA employs a balloon to dilate the stenosis. A steerable guide wire is inserted into and through the stenosis. Next, a balloon-tipped angioplasty catheter is advanced over the guide wire to the stenosis. The balloon is inflated, separating or fracturing the atheroma. Ideally, the lumen will remain patent for a long time. Sometimes, however, it will restenose.
In directional coronary atherectomy, a catheter, containing a cutter housed in its distal end, is advanced over the guide wire into the stenosis. The housing is urged against the atheroma by the inflation of a balloon. Part of the atheroma intrudes through a window in the housing and is shaved away by the cutter.
Stenting is a procedure in which a wire or tubular framework, known as a stent, is compressed onto a balloon catheter and advanced over the guide wire to the stenosis. The balloon is inflated, expanding the stent. Ideally, the stent will hold the arterial lumen open for a prolonged period during which the lumen will remodel itself to a healthy, smooth configuration. Stents are often placed immediately following PTCA or DCA. It must be noted, however, that a severe stenosis may be untreatable by stenting, DCA, or PTCA. The catheters used in these operations are advanced to their target over a guide wire which has already crossed the stenosis. Most guide wires, however, are too slender and soft-tipped to penetrate the calcified tissue of a total occlusion. Additionally, most guide wires have a bent steering tip which is easily trapped or diverted by the complex, hard tissues often found in a severe stenosis. Without a guide wire to follow, neither PTCA nor DCA nor stenting is feasible and the interventionist may have to refer the patient to bypass surgery. Additionally, degeneration makes a saphenous vein graph a risky and therefore undesirable site of intervention.
Thus, many patients would benefit from a less traumatic alternative to bypass surgery for restoring circulation in severely stenosed or totally occluded coronary arteries. In particular, interventionists need to do what has so far been difficult or impossible: safely forge a path of low mechanical resistance through the tough, complex tissues of the severely or totally occlusive atheroma so that blood flow can be restored. Instruments have been developed which can penetrate even a total occlusion. However, such a device must make its way through the occlusion without accidentally perforating the artery. Severe dissections and cardiac tamponade can easily result when an unguided working element is diverted by the heterogeneous tissues of the occlusion. What is needed is a way of reliably guiding a working element through the atheromatous tissue. Once a path is made for a guide wire or catheter to follow, a stent can be installed or DCA or PTCA can be performed. However, reliable guidance is needed in order to open this path safely.
One guidance system used in coronary catheterization is fluoroscopy, a real-time X-ray technique which is widely used to position devices within the vascular system of a patient. For visualizing a totally occluded artery, biplane fluoroscopy can be used wherein the interventionist observes two real-time x-ray images acquired from different angles. Biplane fluoroscopy, however, is unreliable, costly and slow.
Another way of imaging the coronary arteries and surrounding tissues is intravascular ultrasound, which employs an ultrasonic transducer in the distal end of a catheter. The catheter may be equipped with an ultraminiature, very high frequency scanning ultrasonic transducer designed to be introduced into the lumen of the diseased artery. Frustratingly, however, the stenosis is often so severe that the transducer will not fit into the part that the interventionist most urgently needs to explore. Indeed, if the occlusion is too severe to be crossed by a guide wire, it may be too difficult to steer the transducer into the segment of greatest interest. Additionally, an attempt to force an imaging catheter into a severely stenosed artery may have undesirable consequences. Alternatively, the intravascular ultrasonic catheter can be placed in a vein adjacent the occluded artery. Because venous lumina are slightly broader than arterial lumina and rarely if ever stenosed, a larger transducer may be employed. Depending on its configuration, a larger transducer may acquire images over greater distances, with finer resolution, or both. However, there is not always a vein properly situated for such imaging.
While superior imaging alone is of diagnostic interest, imaging and guidance for effective intervention for severe occlusive arterial disease is what is truly desired. A reliable imaging technique is needed for discerning precisely the relative positions of a therapeutic working element, the atheromatous tissues of the occlusion and the arterial lumen proximal and distal to the occlusion as the working element is operated to cross the occlusion.
What is needed is an effective combination of a working element and an imaging system for crossing severe or total occlusions without severely dissecting the artery wall and without causing cardiac tamponade. In particular, such a combination is de
Hinohara Tomoaki
Milo Charles F.
Selmon Matthew R.
Vetter James W.
Lateef Marvin M.
LuMend, Inc.
Shaw Shawna J
Wilson Sonsini Goodrich & Rosati
LandOfFree
Catheter apparatus for treating arterial occlusions does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Catheter apparatus for treating arterial occlusions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Catheter apparatus for treating arterial occlusions will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2511617