Catheter and guide wire exchange system

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06800065

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to catheters used with guide wires in the cardiovascular system and, in particular, to a system for facilitating exchange of such catheters and guide wires, and for transporting such catheters and guide wires to selected sites within a patient.
BACKGROUND OF THE INVENTION
Catheters are inserted to various locations within a patient for a wide variety of purposes and medical procedures. For example only, one type of catheter is used in percutaneous catheter intervention (PCI) for the treatment of a vascular constriction termed a stenosis. In this instance, the catheter has a distally mounted balloon that can be placed, in a deflated condition, within the stenosis, and then inflated to dilate the narrowed lumen of the blood vessel. Such balloon dilation therapy is generally named percutaneous transluminal angioplasty (PTA). The designation PTCA, for percutaneous transluminal coronary angioplasty, is used when the treatment is more specifically employed in vessels of the heart. PTCA is used to open coronary arteries that have been occluded by a build-up of cholesterol fats or atherosclerotic plaque. The balloon at the distal end of the catheter is inflated, causing the site of the stenosis to widen.
The dilation of the occlusion, however, can form flaps, fissures and dissections, which may result in reclosure of the dilated vessel or even perforations in the vessel wall. Implantation of a stent can provide support for such flaps and dissections and thereby prevent reclosure of the vessel or provide a patch repair for a perforated vessel wall until corrective surgery can be performed. A stent is typically a cylindrically shaped device formed from wire(s) or a metal tube and is intended to act as a permanent prosthesis. A stent is deployed in a body lumen from a radially compressed configuration into a radially expanded configuration that allows it to contact and support a body lumen. A stent can be implanted during an angioplasty procedure by using a balloon catheter bearing a compressed stent that has been loaded onto the balloon. The stent radially expands as the balloon is inflated, forcing the stent into contact with the body lumen, thereby forming a supporting relationship with the lumen walls. Alternatively, self-expanding stents may be deployed with a sheath-based delivery catheter. Deployment is effected after the stent has been introduced percutaneously, transported transluminally and positioned at a desired location by the delivery catheter. In addition to angioplasty and stenting procedures, other therapeutic procedures require use of a delivery catheter, such as drug delivery, filters, occlusion devices, diagnostic devices and radiation treatment.
Typically, the placement of such therapeutic delivery catheters involves the use of a guide wire, which maybe inserted into the patient's vasculature through the skin, and advanced to the location of the treatment site. The delivery catheter, which has a lumen adapted to receive the guide wire, then is advanced over the guide wire. Alternatively, the guide wire and the delivery catheter may be advanced together, with the guide wire protruding from the distal end of the delivery catheter. In either case, the guide wire serves to guide the delivery catheter to the location to be treated.
To treat small diameter vessels remote from the entry point into the patient, a guiding catheter is used to span the distance. For example, in PTCA or stent delivery, a guiding catheter is typically inserted into a large artery near the patient's groin, and then advanced toward the heart to the entry opening, or ostium, of the diseased coronary artery. The guiding catheter provides a tubular conduit through which catheters and guide wires can be passed from outside the patient to the vessel being treated.
There are three general types of catheters: “over-the-wire” (OTW) catheters, “rapid exchange” (RX) or single operator catheters and “fixed wire” (FW) or “a balloon on a wire” catheters. An over-the-wire catheter comprises a guide wire lumen that extends the entire length of the catheter. The guide wire is disposed entirely within the catheter guide wire lumen except for the distal and proximal portions of the guide wire, which extend beyond the distal and proximal ends of the catheter respectively. An OTW catheter typically has a “co-axial” catheter construction, wherein two hollow tubes and are nested together such that the lumen
17
of the inner tube can slidably receive guide wires and the annular luminal space
19
formed between the inner and outer tubes is used for inflation/deflation fluid, as shown in
FIGS. 1A and 2A
. An alternative “multilumen” OTW catheter construction has an elongate shaft made from a single extruded tube having two lumens
17
′ and
19
′ formed side-by-side, as shown in
FIGS. 1B and 2B
. OTW catheters that contain both multilumen segments and coaxial segments are also known.
Over-the-wire catheters have many advantages traceable to the presence of a full-length guide wire lumen such as good stiffness and pushability for readily advancing the catheter through the tortuous vasculature and across tight stenoses. The full-length guide wire lumen is also available for transporting radiocontrast dye to the stenosed artery, for making pressure measurements, for infusing drugs and for other therapies. Finally, the full-length guide wire lumen permits removal and replacement of a guide wire in an indwelling catheter, as may be required to alter the shape of the guide wire tip. It is also sometimes desirable to exchange one guide wire for another guide wire having a different stiffness. For example, a relatively soft, or flexible guide wire may prove to be suitable for guiding a PTCA catheter through a particularly tortuous anatomy, whereas following up with a stent-delivery catheter through the same vasculature region may require a guide wire that is relatively stiffer.
Over-the-wire catheters do suffer some shortcomings, however. For example, it often becomes necessary, in the performance of a PCI, to exchange one indwelling catheter for another catheter. In order to maintain a guide wire in position while withdrawing the catheter, the guide wire must be gripped at its proximal end to prevent it from being pulled out of the blood vessel with the catheter. For example, a PTCA catheter, which may typically be on the order of 135 centimeters long, is longer than the proximal portion of the standard guide wire that protrudes out of patient. Therefore, exchanging an over-the-wire PTCA catheter requires an exchange guide wire of about 300 centimeters long, whereas a standard guide wire is about 165 centimeters long.
In one type of over-the-wire catheter exchange, the standard length guide wire first is removed from the lumen of the indwelling catheter. Then, a longer exchange guide wire is passed through the catheter to replace the original wire. Next, while holding the exchange guide wire by its proximal end to control its position in the patient, the catheter is withdrawn proximally from the blood vessel over the exchange guide wire. After the first catheter has been removed, the next OTW catheter is threaded onto the proximal end of the exchange guide wire and is advanced along the exchange guide wire, through the guiding catheter, and into the patient's blood vessels until the distal end of the catheter is at the desired location. The exchange guide wire may be left in place or it may be exchanged for a shorter, conventional-length guide wire. In an alternative type of catheter exchange procedure, the length of the initial guide wire may be extended by way of a guide wire extension apparatus. Regardless of which exchange process is used, the very long exchange guide wire is awkward to handle, thus requiring at least two operators to perform the procedure.
Catheter designs have been developed in an attempt to eliminate the need for guide wire extensions or exchange guide wires. One such catheter design is the rapid exchange (RX) type catheter

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Catheter and guide wire exchange system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Catheter and guide wire exchange system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Catheter and guide wire exchange system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3287327

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.