Catalytic membranes for CO oxidation in fuel cells

Chemistry: electrical current producing apparatus – product – and – With pressure equalizing means for liquid immersion operation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C423S655000, C423S656000, C502S325000, C502S328000

Reexamination Certificate

active

07732080

ABSTRACT:
A hydrogen permeable membrane, which includes a polymer stable at temperatures of about 200 C having clay impregnated with Pt or Au or Ru or Pd particles or mixtures thereof with average diameters of less than about 10 nanometers (nms) is disclosed. The membranes are useful in fuel cells or any device which requires hydrogen to be separated from carbon monoxide.

REFERENCES:
patent: 4186110 (1980-01-01), Jalan et al.
patent: 4316944 (1982-02-01), Landsman et al.
patent: 5888273 (1999-03-01), Buxbaum
patent: 6168650 (2001-01-01), Buxbaum
patent: 6395405 (2002-05-01), Buxbaum
patent: 6461408 (2002-10-01), Buxbaum
patent: 6576350 (2003-06-01), Buxbaum
patent: 6746597 (2004-06-01), Zhou et al.
patent: 7270798 (2007-09-01), Hagemeyer et al.
K.A. Carrado, L. Xu., 1998. “In Situ Synthesis of Polymer-Clay Nanocomposites From Silicate Gels,” Chem. Mater. 10, 1440-1445.
Y. Hasegawa., 2002. The influence of feed composition on CO oxidation using zeolite membranes loaded with metal catalysts. Micropor. Mesopor. Mater., 53, 37-43.
K.A. Carrado, et al., Polymer-Clay Nanocomposites, G. Beall & T.J. Pinnavaia, Eds., Wiley & Sons: UK, 2000, pp. 47-63.
Gastiger, H.A., Markovic, N., Ross, P.N., J. Phys. Chem., 98, 617-625 (1994). Gastiger, H.A., Markovic, N., Ross, P.N., J. Phys. Chem., 99, 16757-16767 (1995).
Arai, M., et al., J. Catal., 161, pp. 704-712 (1996).
Carrado, K.A., “Introduction: Clay Structure, Surface Acidity, and Catalysis,”,Handbook of Layered Materials. pp. 1-38. (2004).
Carrado, K.A., et al., “Crystallization and Textural Porosity of Synthetic Clay Minerals,” J. Mater. Chem. 12, 3228-3237 (2002).
K.A. Carrado, “Synthetic Organo and Polymer-Clays: Preparation, Characterization, and Material Applications.” Appl. Clay Sci. 17, 1-23, (2000).
T.S. Koroleva et al., New Scintillation Materials and Scintiblocs for Neutron and gamma rays registration, Nuclear Instruments and Methods in Physics Research A 537 (2005) 415.
G.C. Tyrell, Nuclear Instruments and Methods in Physics Research A 546 (2005) 180-187.
J.B. Harrison, V.E.Berkheiser, G.W Erdos., 1988. Hydrogen reduction of Pt(NIH3)42˜ supported on montmorillonite. J. Catal. 112, 126-134.
Y. Hasegawa ., 2002. The influence of feed composition on CO oxidation using zeolite membranes loaded with metal catalysts. Micropor. Mesopor. Mater., 53, 37-43.
Liu, W., et al., 1999. Saturation of aromatics and aromatization of C-3 and C-4 hydrocarbons over metal loaded pillared clay catalysts. Catal. Today 51, 135-140.
Komarneni, S., et al., 1995. Microwave-hydrothermal processing of metal-clusters supported in and/or on montmorillonite. Eur. J. Sol. St. Inorg. Chem. 32, 837-849.
Mastalir, A., 2002. Preparation and characterization of platinum nanoparticles immobilized in dihydrocinchonidine-modified montmorillonite and hectorite. Appl. Clay Sci. 22, 9.
Matayabas, J.C., Turner, Sr., Polymer-Clay Nanocomposites, Pinnavaia, T.J., Beall, G.W., Eds., New York: John Wiley & Sons, chap. 11.
Montialla, F., et al., 2002. Carbon-ceramic composites from coal tar pitch and clays: application as electrocatalyst support. Carbon 40, 2193-2220.
Smith, L.J., et al., Solid-State Ionics—2002. MRS Symp. Proc., vol. 756, pp. 339-344.
Szollosi, G., 2001. Preparation, characterization and application of platinum catalysts immobilized on clays. Solid State Ionics, 141-142, 273-278.
Tsai, T.Y., 2000. Polyethylene terephthalate-clay nanocomposites. Polymer-Clay Nanocomposites, Pinnavaia, T.J., Beall, G.W., Eds., New York: John Wiley & Sons, chap. 9.
Vicente, M.A., et al., 2002. Application of Pt/intercalated clays supported catalysts to the complete oxidation of acetone. Affinidad 59, 262-266.
Vicente, M.A., Lambert, J.F., 2001. Synthesis of Pt pillared clay nanocomposite catalysts from [Ptll(NH3)(4)]Cl-2 precursor. Phys. Chem. Chem. Phys. 3, 4843-4852.
N.C. Otto, P.F. Howard, Fuel Cell Seminar-Program and Abstracts, Nov. 17-20, 1996, pp. 559-562, Orlando, FL.
F. Arfelli et al., Mammography with Synchrotron Radiation: Phase Detection Techniques, Radiology, Apr. 2000, vol. 215, No. 1, 286-293.
K.P. Nicholson et al. Some Lithium Iodide Phosphors For Slow Neutron Detection, British Journal of Applied Physics, Vo. 6, Mar. 1955.
R. Parsons, T. Vandernoot, J. Electroanal. Chem., 9, 257 (1988).
G. Sandi, H. Joachin, R. Kizilel, S. Seifert, K.A. Carrado, Chemistry of Materials, 15 (4), 838, 2003.
G. Sandi, K.A. Carrado, H. Joachin, W. Lu, J. Prakash, Journal of Power Sources, 119-121C, 492-496, 2003.
M. Sonoda et al., Computed Radiography Utilizing Scanning Laser Stimulated Luminescence, Radiology, vol. 148, No. 3, Sep. 1983, 833-838.
T. Frelink et al., The Effect of Sn On Pt/C Catalysts For The Methanol Electro-Oxidation, Electrochemica Acta, vol. 39, No. 11/12, 1871-1875, 1994.
M. Doeff, J.S. Reed, Solid State Ionics, 113-115, 109, 1998.
A.R. Mermut, A.F. Cano, Clays and Clay Minerals, 49, 381, 2001.
Buxbaum, R., “Membrane Reactors, Fundamental and Commercial Advantages, e.g, for Methanol Reforming.”15TH BCC Membrane Planning Conference, Newton, MA. Oct. 27-29, 1997.
Lofton, L., “Clay Polymer Nanocomposites for Pressure-Sensitive Adhesives.” www.adhesivesmag.com (2004).
Hay, J.N., Shaw, S.J., “Clay-Based Nanocomposites.” www.azom.com.
Messer, A.E., Fong, V., “Polymer-Clay Nanocomposites Exhibit Unique Properties.” www.about.com (2001).
Nice, K., “How Fuel Cells Work.” science.howstuffworks.com/fuelcell2.htm.
Campbell, S., Stumper, J., Wilkinson, D., 1997 Joint International Meeting of ECS/ISE, Paris, Extended Abst., p. 87.
Parsons, R., Vandernoot, T., J. Electroanal. Chem., 9, 257 (1988).
Ross, P.N., et al., J. Electroanal. Interfacial Electrochem., 59, 177 (1975).
Rauhe Jr., B.R., McLarnon, F.R., Cairns, E.J., J. Electrochem. Soc., 142, 1073 (1995).
O'M Bockris, J., Wroblowa, H.J., J. Electroanal. Chem., 7, 428 (1964).
Freelink, T., Visscher, W., Van Veen, J.A.R., Electrochim. Acta, 39, 1871 (1994).
Freelink, T., et al., Electrochim. Acta, 40, 1537 (1995).
Watanabe, M., Uchida, M., Motoo, S., J. Electroanal. Chem., 229, 395 (1987).
Watanabe, M., Furuchi, Y., Motoo, S., J. Electroanal. Chem., 191, 367 (1985).
Gastiger, H.A., Markovic, N., Ross, P.N., J. Phys. Chem., 99, 16757 (1995).
Gastiger, H.A., Markovic, N., Ross, P.N., J. Phys. Chem., 99, 8290 (1995).
Gastiger, H.A., Markovic, N., Ross, P.N., J. Phys. Chem., 98, 617 (1994).
Iamiiello, R., et al., Electrochim. Acta, 39, 1863 (1994).
Jayaram, V., Lin, Y.S., J. Membrane Sci., 104, 251 (1995).
Watanabe, M., Motoo, S., J. Electroanal. Chem., 60, 275 (1975).
Haner, A.N., Roos, P.N., J. Phys. Chem., 95, 3740 (1991).
Bae, I.T., Takeshi, S., Scherson, D.A., J. Electroanal. Chem., 297, 185 (1991).
Ticanelli, E., et al., J. Electroanal. Chem., 258, 61 (1989).
Freelink, T., Visscher, W., Van Veen, J.A.R., Surface Science, 335, 353 (1995).
Chang; J.H., et al., J. Power Sources 124,18-25 (2003).
Hackett, E., Manias, E., E.P. Giannelis, Chemical Materials, 12, 2161, 2000.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Catalytic membranes for CO oxidation in fuel cells does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Catalytic membranes for CO oxidation in fuel cells, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Catalytic membranes for CO oxidation in fuel cells will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-4185787

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.