Catalytic hydroconversion of chemically digested organic...

Mineral oils: processes and products – Chemical conversion of hydrocarbons – With preliminary treatment of feed

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C585S241000, C585S242000, C585S240000

Reexamination Certificate

active

06270655

ABSTRACT:

BACKGROUND OF INVENTION
This invention pertains to catalytic hydroconversion of hydrocarbon feed materials derived by chemical digestion from organic municipal solid waste (MSW) materials. It pertains particularly to a process for catalytic hydroconversion of such chemically digested organic-MSW feed materials, either alone or blended with heavy oils and/or particulate coal, to produce desirable low boiling hydrocarbon liquid products particularly useful as fuels.
Great quantities of municipal solid waste (MSW) materials are continuously generated in the United States as well as in other developed countries and require appropriate disposal methods, such as usually by incineration or dumping in landfills. Such MSW materials include varying percentages of both organic and inorganic material portions. A process for treating such MSW materials to first concentrate the organic material portion by density separation in a suitable liquid medium, followed by digestion of the organic portion in the same or similar liquid medium to produce unique digested hydrocarbon fuel products has been disclosed in my co-filed U.S. Pat. No. 6,000,639. Although such carbonaceous fuel products derived from organic-MSW materials can be used as clean heavy liquid slurry or solid fuels, it is also desirable to further catalytically hydroconvert this unique heavy carbonaceous material to produce higher value low boiling hydrocarbon liquid products which are useful as transportation fuels. Also, such heavy hydrocarbon materials derived from organic-MSW could be advantageously mixed with and catalytically co-processed together with petroleum residua and/or particulate coal and/or mixed waste plastics to produce similar desirable low-boiling hydrocarbon liquid products useful as transportation fuels.
Catalytic co-processing of blended coal and petroleum residua feedstocks to produce hydrocarbon liquid products is generally known, as is disclosed by U.S. Pat. No. 4,054,504 to Chervenak et al and U.S. Pat. No. 4,853,111 to MacArthur et al. Also U.S. Pat. No. 5,705,722 to Monnier et al discloses a catalytic hydroconversion process for selected biomass liquid carboxylate feed materials such as blended tall oils, wood oils, animal fats and such fatty acids to produce specific light hydrocarbon liquid products. However, a suitable process for catalytic hydroconversion of unique hydrocarbon feed materials from chemically digested organic-MSW sources for producing desirable lower-boiling hydrocarbon liquid products has not been previously available.
SUMMARY OF INVENTION
This invention provides a process for catalytic hydroconversion of heavy hydrocarbon feed materials derived by chemical digestion of the organic portion of municipal solid waste (MSW) to produce desirable low-boiling hydrocarbon liquid products. This unique organic-MSW feed material has been chemically digested in a polar acidic organic liquid such as phenol and is mainly aromatic but with significant portions of unsaturated aliphatic compounds and hydrogen bonded hydroxyl groups, but without any carbonyl groups. This digested organic-MSW feed material can be in either heavy liquid and/or slurry form containing particulate solids, depending upon its prior processing, and has a unique chemical composition as compared to petroleum residua and coal as follows:
Bit-
Sub-bit-
Digested
Petroleum
uminous
uminous
Composition
Organic-MSW
Residua
Coal
Coal
Carbon, wt. %
75-79
80-84
69.9
70.1
Hydrogen, wt. %
  6-7.5
10.1-10.7
4.6
4.6
Oxygen, wt. %
14.5-17  
0.7-1.4
10.5
14.5
Sulfur, wt. %
0.2-0.5
3.5-5.7
4.3
0.4
Nitrogen, wt. %
0.01-0.05
0.4-0.5
1.2
1.3
Ash + Metals,
0.01-0.1 
0.8-3.4
9.5
9.2
wt. %
Carbon/Hydrogen
  10-13.2
7.5-8.3
15.1
15.2
Weight Ratio
Specific Gravity
0.55-0.6 
 0.7-0.75
0.8-0.85
0.75-0.8
Heating Value,
14,000-16,000
17,500
12,540
12,500
Btu/lb
It is noted that this unique chemically digested organic-MSW feed material has carbon and hydrogen contents less than for petroleum residua but significantly greater than for coal. Oxygen content for the chemically digested organic-MSW material is considerably greater than for petroleum resid but is comparable to coal, while sulfur and nitrogen are both significantly less than for either petroleum resid or coal, and the ash plus metals content is advantageously very low.
This unique chemically digested organic-MSW feed material also has chemical composition significantly different from other biomass type feed materials, such as those consisting of blends of tall oils, wood oils, and animal fats, which are generally fatty acids or esters of fatty acids. Such materials are straight chain unsaturated fatty acids having high hydrogen/carbon atomic ratios 1.8-2.0, and have a predominately carboxylate group characteristic. But for the present chemically digested organic-MSW feedstock when characterized by infrared (IR) analysis, the IR spectra indicates the presence of mainly aromatic structure by having wave number peaks located between about 700-1660 wavenumbers, Also, incorporated in the digested organic-MSW feed material is the presence of intermolecularly hydrogen-bonded hydroxyl groups which occur between about 2800-3500 wavenumbers. Notably absent from the IR spectra for the chemically digested organic-MSW feed material are peaks associated with a carbonyl functionality (1700-1750 wavenumbers), so that this feed material is essentially non-carbonyl in its composition and contains unsaturated short chain compounds having significant aromatic character and low hydrogen/carbon atomic ratios of only 1.0-1.2 and is usually solid at room temperatures. For these reasons, this chemically digested organic-MSW material is a new and unique feedstock which is being advantageously further treated by catalytic hydroconversion reactions for producing desirable low-boiling hydrocarbon liquid products, such as gasoline, kerosene and diesel fuels.
In the process of this invention, the unique chemically digested organic-MSW feedstock material is pressurized, heated and fed together with hydrogen into a catalytic reactor. Because the digested organic-MSW feedstock contains minimal ash and metals, the reactor may contain a fixed bed of a known particulate hydroconversion catalyst. Alternatively, the reactor may contain an ebullated or fluidized bed of a known particulate hydroconversion catalyst, or a fine sized dispersed slurry type hydroconversion catalyst. Suitable particulate catalysts contain small amounts such as 0.5-10 wt. % of an active metal(s) such as cobalt, iron molybdenum, or nickel and combinations thereof deposited on a support such as alumina, carbon or silica and combinations thereof. A suitable slurry type catalyst may contain mainly iron oxide and anions of molybdate, phosphate, sulfate or tungstate or combination thereof in either a gel or dried particle form, and is disclosed in U.S. Pat. No. 5,866,501 to Pradhan et al, which is incorporated herein by reference to the extent necessary to adequately disclose the catalyst. The slurry type catalyst loading should be sufficient to provide 500-10,000 wppm iron in the feedstream. The dispersed slurry type catalyst is usually preferred because of its greater surface area and increased catalytic activity. The chemically digested organic-MSW feed material is somewhat more aliphatic and less aromatic and has more oxygenic bonds than petroleum or coal-derived feedstocks, and is also significantly lower in nitrogen and sulfur compounds. Consequently, hydrotreating and hydroconversion reactions for the unique chemically digested organic-MSW feed material alone can be successfully accomplished in a single stage catalytic reactor.
Although this catalytic hydroconversion process for such digested organic-MSW feedstocks can successfully utilize a single stage catalytic reactor, use of two staged catalytic fluidized bed reactors connected together in a series flow arrangement is usually preferred for achieving higher percentage hydroconversion of the feedstock, particularly if the organic-MSW feedstock is blende

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Catalytic hydroconversion of chemically digested organic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Catalytic hydroconversion of chemically digested organic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Catalytic hydroconversion of chemically digested organic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2527421

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.