Catalytic distillation with in situ catalyst replacement

Chemical apparatus and process disinfecting – deodorizing – preser – Chemical reactor – Including solid – extended surface – fluid contact reaction...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C422S198000, C422S198000, C261S112200

Reexamination Certificate

active

06299845

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to equipment for the catalytic distillation processes.
BACKGROUND OF THE INVENTION
The use of catalyst in distillation columns to perform simultaneous distillation and catalytic reactions in a single contacting section or the dual functions of distillation and catalytic reaction in different sections of a common column are well known. To improve contacting and lower pressure drops it has been preferred to incorporate the catalytic material into a structured packing material. The structured packing material serves to increase vapor liquid contacting while lowering the pressure drop of vapor through the packed material. Structured packing material may also be useful to prevent flooding of the packed column section containing the catalyst so that true catalytic distillation may occur if desired.
Structured packing in the form of perforated plates sections has been found particularly desirable for use within catalytic distillation zones. The permeable sheets of material are typically formed from thin plates or screens. A shape in the form of corrugations is preferred. The corrugations aid in the dispersion of vapor and also add surface for contacting between vapor and liquid. Plate or screen sections are typically used to facilitate the forming process. Forming techniques have generally limited either the size or thickness of the corrugated packing elements made from plates. Large plates must use easily deformable material such as thin foil-like sheets. The thin plate materials have insufficient strength to support catalyst and maintain flow channels through the packing material. More structurally stable material such as thicker plate elements can only be formed in relatively small sections having width and height dimensions of less than 1 meter. While thinner plate sections can be made to maintain required channel dimensions, the thinner plates must be modified to add additional structural strength by techniques such as joining the corrugations at their contact points. However, such techniques are expensive and greatly complicate the manufacture of the packing elements.
The need to use plate elements having relatively small lateral dimensions as a packing material interferes with the long term usefulness of catalytic distillation arrangements. Effective catalytic distillation zones require at least several meters of height to have adequate reaction time and sufficient stages of separation. It's relatively common to have structured packing sections that contain catalyst with heights of about 9-11 meters and, depending on the diameter of the column, containing more that 1000 ft
3
of catalytic structured packing volume.
With the constrained dimension of the corrugated plate or screened elements, multiple layers of such elements are routinely stacked into the catalytic distillation section of a distillation column. Loading of multiple elements is time consuming. The structured packing units containing catalyst ordinarily have a roughly cube shaped geometry with sides of 12 to 18 inches in length and therefore can occupy as little as 1 cubic foot of distillation volume. Accordingly, for an average size reactive distillation arrangement, there could be more than 1000 of such cubes with many smaller cubes shaped to accommodate the curvature of the usual round column walls.
The stacking of multiple elements also occludes the openings of the channels provided between the corrugations which prevents catalyst from being loaded into the packing once it is in place in the column. Therefore, catalyst is preloaded into the packing modules before their installation into the distillation column. These modules typically retain the catalyst in a sealed envelope between the corrugations. In such arrangements it is not possible to replace catalyst without removing the packing units from the distillation column. Removal and installation of the packing units from the distillation column makes catalyst change-out and catalyst replacement a time consuming operation and an expensive part of continued catalytic distillation operation within the column.
The use of sealed catalyst envelopes has other disadvantages. For example, the number of channels that contain catalyst and are free of catalyst cannot be changed other than by a complete removal, replacement, and reloading of packing material from the column.
DESCRIPTION OF THE PRIOR ART
U.S. Pat. No. 5,470,542 discloses a catalytic distillation, packing material comprised of profiled walls in the form of corrugations having sealed ends at the top and bottom of alternate channels for retaining a particular catalyst. The walls are permeable and contact points between corrugations are joined in central sections of the channel to provide additional structural strength.
U.S. Pat. No. 5,073,236 discloses a structure for catalytic distillation having permeable wall members formed into corrugated shapes and alternate sealed channels that retain catalyst. The structure is incorporated into relatively short catalytic distillation modules with alternate vertical layers stacked so that the vertically adjacent channels extend perpendicularly.
U.S. Pat. No. 5,417,938 discloses a structure for catalytic distillation having vapor permeable, but catalyst impermeable wall elements that provide envelopes for retaining catalyst particles that are located between alternate horizontal layers of corrugated wall elements. The envelopes are completely closed and retain the catalyst in a sealed arrangement. Multiple layers of such envelopes are shown in a stacked arrangement.
U.S. Pat. No. 4,296,050 discloses a packing element made up of a plurality of corrugated plates having a plurality of apertures therein and packed in alternate layers having the walls perpendicularly disposed with respect to each other between layers. The use of catalyst with the packing is not taught.
French patent 2718985-A1 discloses a method for the explosion forming of corrugated plates having perforations therein. The method is useful in forming long corrugated plates of relatively heavy thickness.
SUMMARY OF THE INVENTION
It is an object of this invention to provide a packing material constructed of corrugated walls that provides a rigid structure over an extended height.
It is another object of this invention to provide a packing material and column for catalytic distillation in which the catalyst material is easily replaced.
It is a further object of this invention to provide a catalytic distillation packing and distillation column arrangement that permits the replacement of catalyst without removal of packing material from the distillation column.
It is a further object of this invention to provide a catalytic distillation packing and distillation column in which a configuration of catalyst-containing and catalyst-free channels is readily varied.
This invention is a packing material for catalytic distillation that uses corrugated walls to define channels for retaining catalyst and maintains continuous channels from the top to the bottom of the packing material so that catalyst is readily removed from the bottom of the channels. Catalyst may be removed from the channels to replace spent or inactive catalyst with fresh catalyst while the packing material is still located in the distillation column thus requiring only a fraction of the time normally required to replace catalyst. In addition, the ability to remove catalyst provides an added degree of flexibility in loading catalyst into the packing arrangement. For example, from one loading to the next, catalyst may be changed from a loading that places catalyst in alternate channels to a loading that places catalyst in every third channel. Thus the degree of distillation and catalyst reaction can be altered without a complete removal and replacement of the packing material.
Accordingly, in one embodiment this invention is a catalytic distillation column containing a structured packing. The structured packing comprises a plurality of corrugated plates having perforations defined therein and placed para

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Catalytic distillation with in situ catalyst replacement does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Catalytic distillation with in situ catalyst replacement, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Catalytic distillation with in situ catalyst replacement will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2587075

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.