Catalytic combustion surfaces and method for creating...

Internal-combustion engines – Combustion chamber – Having catalytic cambustion aid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S668000, C123S669000, C123S188300

Reexamination Certificate

active

06655369

ABSTRACT:

The present invention relates generally to increasing the efficiency and reducing emissions of internal combustion in engines. More particularly, the present invention relates generally to the application of coatings to internal combustion engines for the purpose of reducing unwanted emissions, and more particularly to the application of nickel coated materials to the combustion surfaces of reciprocating piston internal combustion engines to promote fuel combustion efficiency.
BACKGROUND
Internal combustion engines using hydrocarbon fuels are widely used due to their ability to create mechanical energy from a fuel that provides power for a sufficient time period without requiring complex or large fuel storage associated with the engine. Internal combustion engines may utilize the Diesel cycle, wherein self-ignition of the hydrocarbon fuel is used to initiate combustion of the hydrocarbon fuel. Hydrocarbon fuel used in Diesel cycle engines typically contains heavier petroleum fractions than the hydrocarbon fuel used in engines having spark ignition systems. The fuel having the heavier hydrocarbon fractions is typically called diesel fuel, even though the fuel can be used in spark ignited and spark assisted ignition engines designed to combust the heavier fractions. Engines using diesel fuel are widely used in commercial vehicles due to inherent efficiencies associated with the diesel fuel and the diesel cycle. Fuels utilizing the heavier hydrocarbon fractions tend to be less expensive than fuels using lighter hydrocarbon fractions, due to lower demand and reduced refining costs. The use of the higher fractionated fuel allows diesel fueled engines to utilize a higher compression ratio, resulting in a higher combustion efficiency.
Although diesel fueled engines are preferred in commercial applications, the use of diesel fueled engines is not without room for improvement. Normal operation of diesel fueled engines results in the production of harmful emissions, including soot and unburned hydrocarbon molecules. Diesel fueled engines tend to have higher exhaust emissions, particularly soot, when heavily loaded, or run in an improper state of tuning. Also, the cost of operating a diesel fueled engine is heavily influenced by the cost of the fuel being used in the engine.
The use of catalytic materials in the exhaust stream of hydrocarbon fueled engines has been implemented to reduce unwanted emissions. The catalytic effect in the exhaust stream accomplishes a reduction of unwanted emissions, but accomplishes the reduction of the unburned hydrocarbons downstream from the combustion chamber, such that energy released through the catalytic reaction is not utilized, and must be rejected as waste heat. Thus, the catalytic reaction provides no efficiency in the conversion of the hydrocarbon fuel into mechanical energy.
Technologies such as low heat rejection (LHR) coatings are being developed to improve the efficiency of fuel combustion in diesel fueled engines. LHR engines rely on the use of combustion surface coatings which form insulation or thermal barriers, thus retaining the heat of combustion within the combustion volume, allowing more of the combustion energy to be converted into mechanical energy, thus reducing the fuel consumption for a given power level. LHR technologies are presently directed towards the use of ceramic coatings applied to the combustion surfaces of an engine to inhibit heat transfer from the combustion products to the engine block and heads. The use of ceramic materials, however, raises issues related to lubrication of the reciprocating components, as well as to the formation of deposits on the coating surfaces (referred to as “coking”) which inhibit combustion efficiency.
U.S. Pat. No. 5,987,882 to Voss et al. is directed towards combining a ceramic layer with an oxidation catalyst material, such as a rare-earth metal oxide. The described multi-component coating is claimed to increase the efficiency of combustion by retaining heat within the volume where the coating is applied. A benefit associated with such retention is an improved performance of the catalyst material, due to increased chemical action of the catalyst at elevated temperatures. Application of the coating to combustion surfaces of a reciprocating engine is described in the patent. The application described requires the integration of a bond coat as a bonding substrate below the insulative coating. The bond coat used for the described examples consisted of a 4 mil metal-aluminum-chromium-yttrium alloy, preferably using nickel, cobalt, or iron for the metallic component.
The use of rare-earth metallic oxide catalytic materials is, may be, however, susceptible to poisoning of the catalyst material. Sulfur contained in fuel to which the catalyst material is exposed prevents catalysts from functioning properly by causing sulfate production that inhibits catalyst regeneration. Accordingly, the use of catalytic technologies which incorporate materials such as platinum and praeseodymium oxide may be problematic when used with current diesel fuel, which contain sulfur levels sufficient to cause poisoning of the catalyst materials.
Other efforts towards improving the combustion efficiency of diesel fueled engines have been directed towards improved fuel formulations, combustion chamber size and shape, and the use of pre-ignition chambers. Each of these technologies may provide some gain with respect to combustion efficiency, however the costs associated with their implementation are not optimal when considered in light of the commercial applications in which the diesel fueled engines are used. The expense of reformulated fuels directly increases the operating costs of engine utilization. Intricate combustion chamber shapes, pre-ignition chambers, and ceramic-metallic coatings add to the production cost and complexity of the engines, as well as complicate maintenance issues and potentially the reliability of the engines themselves.
The use of coatings on engine components, including diesel fueled engine components, has generally been directed towards reduction of friction between components of the engine. The principal areas of interest have been the walls of the cylinder bore and the sealing rings, which extend between the skirt of a piston and the cylinder bore. U.S. Pat. No. 5,866,518 to Dellacorte et al. describes a composite material for use in high temperature applications. The Dellacorte composite consists primarily of chromium dioxide (60-80% by weight) in a metal binder having at least 50% nickel, chromium, or a combination of nickel and chromium. The greatest proportion of binder described is 60%, such that the highest proportion of nickel used in the coating is 30%, at which point no chromium is included. The Dellacorte patent describes the composite as providing a self-lubricating, friction and wear reducing material to be applied to the sealing rings.
U.S. Pat. No. 5,292,382 to Longo describes a sprayable molybdenum/iron coating which may be sprayed on piston rings as a means of reducing friction. The composition of the Longo material is described as 25-40% molybdenum, 4-8% chromium, 12-18% nickel, and 25-50% iron, with carbon, boron, and silicon additionally included in the composition.
SUMMARY OF THE INVENTION
The present invention is directed towards a combustion chamber surface coating and method for applying the coating to improve the combustion efficiency of internal combustion engines, particularly, but not necessarily limited to, those utilizing diesel fuel. The coating improves the combustion efficiency through a catalytic reaction with the hydrocarbon based fuel which causes hydrocarbon molecules to disassociate into free radicals at an accelerated rate. The higher concentration of free radicals drives the combustion reaction to a faster and more complete combustion of the hydrocarbon fuel, thus obtaining energy from the fuel more efficiently, as the more complete combustion provides more power per unit of fuel and less unwanted emissions.
The catalytic reaction is accomplished by p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Catalytic combustion surfaces and method for creating... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Catalytic combustion surfaces and method for creating..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Catalytic combustion surfaces and method for creating... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3102695

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.